Calculating Electron Movement in a Television Picture Tube

  • Thread starter Thread starter z_sharp
  • Start date Start date
  • Tags Tags
    Television
AI Thread Summary
In a television picture tube, electrons are accelerated through a vacuum by high voltage, and the question arises whether they can move upwards against gravity if the TV is laid on its back. To keep an electron stationary, the electric field must balance the gravitational force acting on it. The relevant equations include E = mg/q for calculating the electric field and E = V/d for determining the voltage across a distance of 20 cm. To solve for the charge (q) of the electron, one should refer to a table of physical constants. Understanding these principles is essential for calculating the necessary voltage to counteract gravity.
z_sharp
Messages
9
Reaction score
0
Hey all, I'm working on this question for my homework. Can someone please help me get it under control, I read it and all I can say is 'huh'?

In a television picture tube, electrons are accelerated by thousands of volts through a vacuum. If a television set were laid on its back, would electrons be able to move upwards against the force of gravity? What potential difference, acting over a distance of 20 cm, would be needed to balance the downward force of gravity so that the electron would remain stationary? Assume that the electric field is uniform.

Thanks everyone
 
Physics news on Phys.org
If there is a voltage difference, there must be an electric field. That field is what accelerates particles, and balances gravity (in your question).

What magnitude electrical field would it take to balance the weight (on earth) of an electron?

What would the voltage be over a 20cm gap with that electric field?
 
Ok I think I have the right idea here...

Crosson said:
If there is a voltage difference, there must be an electric field. That field is what accelerates particles, and balances gravity (in your question).

What magnitude electrical field would it take to balance the weight (on earth) of an electron?

mg=qE

E = mg/q

What would the voltage be over a 20cm gap with that electric field?


E = V/d


Now I have values for g, m, d. How do I find q, so I can do the first part of the question?
 
Jchem said:
Now I have values for g, m, d. How do I find q, so I can do the first part of the question?

You look in your table of physical constants to find the charge of an electron.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top