MHB Calculating Elevation Angle to Hit Target at 100 m and 10 m

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Angle
AI Thread Summary
To calculate the elevation angle needed to hit a target located 100 m away and 10 m high, with an initial velocity of 60 m/s and gravitational acceleration of 10 m/s², the equations of motion for both vertical and horizontal components are used. The time of flight is expressed in terms of the angle of elevation, leading to a quadratic equation in terms of the tangent of the angle. The solutions yield two valid angles for elevation, indicating multiple trajectories can hit the target. The discussion also touches on the derivation of a linear combination identity used in the calculations. The final step involves substituting the known values to find the specific angle of elevation.
Monoxdifly
MHB
Messages
288
Reaction score
0
A target is located at the distance 100 m and height 10 m. How much is the elevation angle of the shooter to be able to hit the target if the initial velocity is 60 m/s and g = $$10m/s^2$$?

What I have done:
100 = 60sin$$\alpha$$t and 10 = 60sin$$\alpha$$t - $$\frac{1}{2}(10)t^2$$
$$t=\frac{5cos\alpha}{3}$$ and $$10=t(60sin\alpha)-t)$$
Dunno what to do from here on.
 
Mathematics news on Phys.org
Let's let $\theta$ be the angle of elevation. Let's orient our coordinate axes such that the vertical axis $y$ points up in the positive direction, and the horizontal axis $x$ points in the direction of motion in the positive direction.

For the vertical component of motion, we have:

$$a_y=-g$$

$$v_y=-gt+v_0\sin(\theta)$$

$$y=-\frac{g}{2}t^2+v_0\sin(\theta)t$$

For the horizontal component of motion, we have:

$$a_x=0$$

$$v_x=v_0\cos(\theta)$$

$$x=v_0\cos(\theta)t$$

Let's eliminate the parameter $t$, by using $$t=\frac{x}{v_0\cos(\theta)}$$:

And so:

$$y=-\frac{g}{2}\left(\frac{x}{v_0\cos(\theta)}\right)^2+v_0\sin(\theta)\left(\frac{x}{v_0\cos(\theta)}\right)=-\frac{g}{2v_0^2\cos^2(\theta)}x^2+\tan(\theta)x$$

Multiply through by $\cos^2(\theta)$:

$$y\cos^2(\theta)=-\frac{g}{2v_0^2}x^2+\sin(\theta)\cos(\theta)x$$

Using double-angle identities, and multiplying through by 2, we may write:

$$y\left(\cos(2\theta)+1\right)=-\frac{g}{v_0^2}x^2+\sin(2\theta)x$$

Arrange as:

$$y+\frac{g}{v_0^2}x^2=\sin(2\theta)x-\cos(2\theta)y$$

Using a linear combination identity, we have:

$$\sqrt{x^2+y^2}\sin\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)=y+\frac{g}{v_0^2}x^2$$

Solving for $\theta$, there results:

$$\theta=\frac{1}{2}\left(\arcsin\left(\frac{v_0^2y+gx^2}{v_0^2\sqrt{x^2+y^2}}\right)+\arctan\left(\frac{y}{x}\right)\right)$$

Now, all that's left is to plug in the given values. :)
 
Monoxdifly said:
A target is located at the distance 100 m and height 10 m. How much is the elevation angle of the shooter to be able to hit the target if the initial velocity is 60 m/s and g = $$10m/s^2$$?

$\Delta x = v_0\cos{\theta_0} \cdot t \implies t = \dfrac{\Delta x}{v_0\cos{\theta_0}} = \dfrac{100}{60\cos{\theta}}$

$\Delta y = v_0\sin{\theta_0} \cdot t - \dfrac{1}{2}gt^2 \implies 10 = 60\sin{\theta} \cdot \dfrac{5}{3\cos{\theta}} - 5\left(\dfrac{5}{3\cos{\theta}}\right)^2 \implies 10 = 100\tan{\theta} - \dfrac{125}{9} \sec^2{\theta}$

using the identity $\sec^2{\theta} = 1 + \tan^2{\theta}$ yields a quadratic equation in $\tan{\theta}$ ...

$0 = -43 + 180\tan{\theta} - 25\tan^2{\theta}$

the quadratic formula yields two valid solutions for $\tan{\theta}$ ...

$\tan{\theta} = \dfrac{18 \pm \sqrt{281}}{5}$
 
Yes, there should be two solutions, and in my post above, I should have included:

$$\sqrt{x^2+y^2}\sin\left(\pi-\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)\right)=y+\frac{g}{v_0^2}x^2$$

As a means of getting the other. :)
 
MarkFL said:
Let's let $\theta$ be the angle of elevation. Let's orient our coordinate axes such that the vertical axis $y$ points up in the positive direction, and the horizontal axis $x$ points in the direction of motion in the positive direction.

For the vertical component of motion, we have:

$$a_y=-g$$

$$v_y=-gt+v_0\sin(\theta)$$

$$y=-\frac{g}{2}t^2+v_0\sin(\theta)t$$

For the horizontal component of motion, we have:

$$a_x=0$$

$$v_x=v_0\cos(\theta)$$

$$x=v_0\cos(\theta)t$$

Let's eliminate the parameter $t$, by using $$t=\frac{x}{v_0\cos(\theta)}$$:

And so:

$$y=-\frac{g}{2}\left(\frac{x}{v_0\cos(\theta)}\right)^2+v_0\sin(\theta)\left(\frac{x}{v_0\cos(\theta)}\right)=-\frac{g}{2v_0^2\cos^2(\theta)}x^2+\tan(\theta)x$$

Multiply through by $\cos^2(\theta)$:

$$y\cos^2(\theta)=-\frac{g}{2v_0^2}x^2+\sin(\theta)\cos(\theta)x$$

Using double-angle identities, and multiplying through by 2, we may write:

$$y\left(\cos(2\theta)+1\right)=-\frac{g}{v_0^2}x^2+\sin(2\theta)x$$

Arrange as:

$$y+\frac{g}{v_0^2}x^2=\sin(2\theta)x-\cos(2\theta)y$$

Using a linear combination identity, we have:

$$\sqrt{x^2+y^2}\sin\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)=y+\frac{g}{v_0^2}x^2$$

Solving for $\theta$, there results:

$$\theta=\frac{1}{2}\left(\arcsin\left(\frac{v_0^2y+gx^2}{v_0^2\sqrt{x^2+y^2}}\right)+\arctan\left(\frac{y}{x}\right)\right)$$

Now, all that's left is to plug in the given values. :)

Thank you! All comprehensible except the linear combination identity part. What's that and how was it derived?
 
Monoxdifly said:
Thank you! All comprehensible except the linear combination identity part. What's that and how was it derived?

Here's a link that describes the derivation of the identity:

Linear Combination of Sine and Cosine
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top