Calculating Elevation Angle to Hit Target at 100 m and 10 m

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary
SUMMARY

The discussion focuses on calculating the elevation angle required for a shooter to hit a target located 100 meters away and 10 meters high, using an initial velocity of 60 m/s and gravitational acceleration of 10 m/s². The key equations derived include the horizontal and vertical motion equations, leading to a quadratic equation in terms of the tangent of the angle. The final formula for the elevation angle θ is given as θ = 1/2(arcsin((v₀²y + gx²)/(v₀²√(x² + y²))) + arctan(y/x)). The discussion concludes with the need to plug in the specified values to find the angle.

PREREQUISITES
  • Understanding of projectile motion equations
  • Familiarity with trigonometric identities, specifically tangent and sine
  • Knowledge of quadratic equations and their solutions
  • Basic grasp of coordinate systems in physics
NEXT STEPS
  • Study the derivation of the linear combination of sine and cosine identities
  • Learn about projectile motion in two dimensions
  • Explore the application of quadratic equations in physics problems
  • Investigate the effects of varying initial velocities on projectile trajectories
USEFUL FOR

Students and professionals in physics, engineers working on projectile dynamics, and anyone interested in the mathematical modeling of motion in two dimensions.

Monoxdifly
MHB
Messages
288
Reaction score
0
A target is located at the distance 100 m and height 10 m. How much is the elevation angle of the shooter to be able to hit the target if the initial velocity is 60 m/s and g = $$10m/s^2$$?

What I have done:
100 = 60sin$$\alpha$$t and 10 = 60sin$$\alpha$$t - $$\frac{1}{2}(10)t^2$$
$$t=\frac{5cos\alpha}{3}$$ and $$10=t(60sin\alpha)-t)$$
Dunno what to do from here on.
 
Mathematics news on Phys.org
Let's let $\theta$ be the angle of elevation. Let's orient our coordinate axes such that the vertical axis $y$ points up in the positive direction, and the horizontal axis $x$ points in the direction of motion in the positive direction.

For the vertical component of motion, we have:

$$a_y=-g$$

$$v_y=-gt+v_0\sin(\theta)$$

$$y=-\frac{g}{2}t^2+v_0\sin(\theta)t$$

For the horizontal component of motion, we have:

$$a_x=0$$

$$v_x=v_0\cos(\theta)$$

$$x=v_0\cos(\theta)t$$

Let's eliminate the parameter $t$, by using $$t=\frac{x}{v_0\cos(\theta)}$$:

And so:

$$y=-\frac{g}{2}\left(\frac{x}{v_0\cos(\theta)}\right)^2+v_0\sin(\theta)\left(\frac{x}{v_0\cos(\theta)}\right)=-\frac{g}{2v_0^2\cos^2(\theta)}x^2+\tan(\theta)x$$

Multiply through by $\cos^2(\theta)$:

$$y\cos^2(\theta)=-\frac{g}{2v_0^2}x^2+\sin(\theta)\cos(\theta)x$$

Using double-angle identities, and multiplying through by 2, we may write:

$$y\left(\cos(2\theta)+1\right)=-\frac{g}{v_0^2}x^2+\sin(2\theta)x$$

Arrange as:

$$y+\frac{g}{v_0^2}x^2=\sin(2\theta)x-\cos(2\theta)y$$

Using a linear combination identity, we have:

$$\sqrt{x^2+y^2}\sin\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)=y+\frac{g}{v_0^2}x^2$$

Solving for $\theta$, there results:

$$\theta=\frac{1}{2}\left(\arcsin\left(\frac{v_0^2y+gx^2}{v_0^2\sqrt{x^2+y^2}}\right)+\arctan\left(\frac{y}{x}\right)\right)$$

Now, all that's left is to plug in the given values. :)
 
Monoxdifly said:
A target is located at the distance 100 m and height 10 m. How much is the elevation angle of the shooter to be able to hit the target if the initial velocity is 60 m/s and g = $$10m/s^2$$?

$\Delta x = v_0\cos{\theta_0} \cdot t \implies t = \dfrac{\Delta x}{v_0\cos{\theta_0}} = \dfrac{100}{60\cos{\theta}}$

$\Delta y = v_0\sin{\theta_0} \cdot t - \dfrac{1}{2}gt^2 \implies 10 = 60\sin{\theta} \cdot \dfrac{5}{3\cos{\theta}} - 5\left(\dfrac{5}{3\cos{\theta}}\right)^2 \implies 10 = 100\tan{\theta} - \dfrac{125}{9} \sec^2{\theta}$

using the identity $\sec^2{\theta} = 1 + \tan^2{\theta}$ yields a quadratic equation in $\tan{\theta}$ ...

$0 = -43 + 180\tan{\theta} - 25\tan^2{\theta}$

the quadratic formula yields two valid solutions for $\tan{\theta}$ ...

$\tan{\theta} = \dfrac{18 \pm \sqrt{281}}{5}$
 
Yes, there should be two solutions, and in my post above, I should have included:

$$\sqrt{x^2+y^2}\sin\left(\pi-\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)\right)=y+\frac{g}{v_0^2}x^2$$

As a means of getting the other. :)
 
MarkFL said:
Let's let $\theta$ be the angle of elevation. Let's orient our coordinate axes such that the vertical axis $y$ points up in the positive direction, and the horizontal axis $x$ points in the direction of motion in the positive direction.

For the vertical component of motion, we have:

$$a_y=-g$$

$$v_y=-gt+v_0\sin(\theta)$$

$$y=-\frac{g}{2}t^2+v_0\sin(\theta)t$$

For the horizontal component of motion, we have:

$$a_x=0$$

$$v_x=v_0\cos(\theta)$$

$$x=v_0\cos(\theta)t$$

Let's eliminate the parameter $t$, by using $$t=\frac{x}{v_0\cos(\theta)}$$:

And so:

$$y=-\frac{g}{2}\left(\frac{x}{v_0\cos(\theta)}\right)^2+v_0\sin(\theta)\left(\frac{x}{v_0\cos(\theta)}\right)=-\frac{g}{2v_0^2\cos^2(\theta)}x^2+\tan(\theta)x$$

Multiply through by $\cos^2(\theta)$:

$$y\cos^2(\theta)=-\frac{g}{2v_0^2}x^2+\sin(\theta)\cos(\theta)x$$

Using double-angle identities, and multiplying through by 2, we may write:

$$y\left(\cos(2\theta)+1\right)=-\frac{g}{v_0^2}x^2+\sin(2\theta)x$$

Arrange as:

$$y+\frac{g}{v_0^2}x^2=\sin(2\theta)x-\cos(2\theta)y$$

Using a linear combination identity, we have:

$$\sqrt{x^2+y^2}\sin\left(2\theta-\arctan\left(\frac{y}{x}\right)\right)=y+\frac{g}{v_0^2}x^2$$

Solving for $\theta$, there results:

$$\theta=\frac{1}{2}\left(\arcsin\left(\frac{v_0^2y+gx^2}{v_0^2\sqrt{x^2+y^2}}\right)+\arctan\left(\frac{y}{x}\right)\right)$$

Now, all that's left is to plug in the given values. :)

Thank you! All comprehensible except the linear combination identity part. What's that and how was it derived?
 
Monoxdifly said:
Thank you! All comprehensible except the linear combination identity part. What's that and how was it derived?

Here's a link that describes the derivation of the identity:

Linear Combination of Sine and Cosine
 

Similar threads

Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 63 ·
3
Replies
63
Views
4K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K