MHB :Calculating $k$ to Find Wire Length

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Length Wire
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{2.5.1}$
Electrical Resistance of a Wire
The electrical resistance of a wire varies directly with the length of the wire and inversely with the square of the diameter of the wire.
If a wire 432 feet long and 4 mm in diameter has a resistance of 1.24 $\Omega$
find the length of a wire of the same material whose resistance is 1.44 $\Omega$ and whose diameter is 3 mm

y varies inversely with x $\quad y=\dfrac{k}{x}$
y varies directly with x $\quad y=kx$

OK not real sure how to set this up think we need to get the value of $k$ first
 
Last edited:
Mathematics news on Phys.org
Well, by the problem statement [math]R \propto L[/math] and [math]R \propto \dfrac{1}{d^2}[/math]. Thus
[math]R = k \dfrac{L}{d^2}[/math]

Is this what you were asking about?

-Dan
 
yes,
 
Last edited:
$1.24 = k \dfrac{L}{d^2}=k \dfrac{432}{(4)^2}$

$k=0.04592$

so far hopefully

added to Google calendar
 
Last edited:
karush said:
$1.24 = k \dfrac{L}{d^2}=k \dfrac{432}{(4)^2}$

$k=0.04592$

so far hopefully

added to Google calendar
Units! (They are really weird units.) This is a Physics problem. All quantities with units must be stated with what they are.

So far so good. So use [math]R = k \dfrac{L}{d^2}[/math] again to find R.

-Dan
 
karush said:
$\tiny{2.5.1}$
Electrical Resistance of a Wire
The electrical resistance of a wire varies directly with the length of the wire and inversely with the square of the diameter of the wire.
If a wire 432 feet long and 4 mm in diameter has a resistance of 1.24 $\Omega$
find the length of a wire of the same material whose resistance is 1.44 $\Omega$ and whose diameter is 3 mm

y varies inversely with x $\quad y=\dfrac{k}{x}$
y varies directly with x $\quad y=kx$

OK not real sure how to set this up think we need to get the value of $k$ first
Do you understand that you need ONE equation, not two? And of course you don't want to use "x" for both length and diameter.

Letting "R" be electrical resistance", L be the length, and D the diameter of the wire, since R varie directly with L and inversely with the square D,
$R= k\frac{L}{D^2}$.

Now, yes, you need to find k. For that you need to know every thing except k.
You are told "a wire 432 feet long and 4 mm in diameter has a resistance of 1.24 Ω".
So $1.24= k\frac{432}{4^2}$. Solve that for k.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top