Calculating Momentum Eigenstates of Spin in the Y Direction

AI Thread Summary
The discussion focuses on calculating the momentum eigenstates of spin in the y-direction using the Pauli spin matrix σ_y. The eigenvalues obtained from the determinant of the spin angular momentum operator S_y are ±ħ/2. The participants clarify the process of deriving the eigenstates by solving the matrix equations for each eigenvalue, leading to the eigenvector for λ = +ħ/2 being [1, -i]. There is also a correction regarding the identification of eigenvectors, noting that different forms can arise due to multiplicative constants. The conversation emphasizes the importance of normalization and proper matrix handling in these calculations.
PsiPhi
Messages
19
Reaction score
0

Homework Statement


Starting with \sigma_{y}, calculate the momentum eigenstates of spin in the y direction.
\sigma_{y} = \left[\stackrel{0}{i} \stackrel{-i}{0}\right] (Pauli spin matrix in the y direction)
S_{y} = \frac{\hbar}{2}\sigma_{y} (spin angular momentum operator for the y direction)

Homework Equations



A\left|\psi\right\rangle = a\left|\psi\right\rangle where A is some linear operator and a is the corresponding eigenvalue

The Attempt at a Solution



The solution I tried was determining the eigenvalues for the matrix, det (A - \lambda I) = 0, where A \equiv S_{y}, \lambda
are the eigenvalues and I is the 2x2 identity matrix.

After working through the determinant expression, I obtain eigenvalues of \lambda = \pm \frac{\hbar}{2}

Then for momentum eigenstates, since the eigenstates aren't given I just used an arbitrary eigenstate, defined as \left|\psi\right\rangle

Therefore, the momentum eigenstates I obtain are just

S_{y}\left|\psi\right\rangle = \pm \frac{\hbar}{2} \left|\psi\right\rangle

I'm just wondering if my logic is correct as I step through my calculations. First I tried operator the spin angular momentum (y-direction) operator in the known matrices for spin-up, spin-down states. But, I realized that these were states in the z-direction. So, for momentum eigenstates in the y-direction the only way I could think of was the eigenvalue equation method.

Thanks.

p.s. Does anyone know how to write matrices in latex? Sorry, about my dodgy matrix up above for sigma y
 
Physics news on Phys.org
"momentum eigenstates" doesn't make sense. I think what they want is just for you to find the eigenstates of S_y. Solve the following matrix equation (matrices are a pain in tex, so I didn't write the matrices explicitly--I used I for the 2x2 unit matrix)
<br /> (S_y - \frac{\hbar}{2}I) \vec v = 0<br />
for v_1 in terms of v_2 (you only get one independent equation from the above matrix equation) and then also use the fact that v should be normalized. This gives you the eigenstate of S_y with eigenvalue +hbar/2.

Then solve
<br /> (S_y + \frac{\hbar}{2}I) \vec u =0<br />
for u_1 in terms of u_2 and normalize to get the other eigenstate.
 
For the eigenvalue \lambda = + \frac{\hbar}{2},

I get two simulatenous equations:
-v_{1} + iv_{2} = 0 ... (1)
iv_{1} - v_{2} = 0 ... (2)

Solving (1) for v_{1} in terms of v_2:
-v_{1} = iv_{2}
v_{1} = -iv_{2}

Therefore, looking at the comparison of v_{1} and v_2, the eigenvector for \lambda = + \frac{\hbar}{2} is \left[\stackrel{1}{-i}\right]

And for the negative eigenvalue it should follow the same logic, haven't determined it yet though.

Is this correct, for the positive eigenvalue?
 
PsiPhi said:
For the eigenvalue \lambda = + \frac{\hbar}{2},

I get two simulatenous equations:
-v_{1} + iv_{2} = 0 ... (1)
iv_{1} - v_{2} = 0 ... (2)

Solving (1) for v_{1} in terms of v_2:
-v_{1} = iv_{2}
v_{1} = -iv_{2}

Therefore, looking at the comparison of v_{1} and v_2, the eigenvector for \lambda = + \frac{\hbar}{2} is
\left[\stackrel{1}{-i}\right]
Nope, you made a little mistake; if you look at the above \vec vyou will see that v_2 = -i, so that iv_2 = 1 = v_1 which is not what your equations say.

But don't fear, the above vector is actually still an eigenvector, it's the eigenvector with eigenvalue -\hbar/2 as you can easily check by acting on it with the matrix S_y.
 
Ah yes, you are correct. The eigenvector I did before was for -\frac{\hbar}{2}. But a weird thing happens, if i solve v_2 in terms of v_1 you will get a different eigenvector. However, I finally realized they differ by a multiplicative constant of i.

Thanks for the help, olgranpappy.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top