The way I was introduced to e was to try to find the exponentional which was its own derivative. So say we have a^x, we know that a^0 is 1, so try to find the value of a such that the gradient of a^x is 1 at the point (0,1). From this you get the definition of a, or as we know it e: Lim (1+(1/n))^n as n tends to infinity. I think this is how it was approached, I think Eli Maor has a book on the history of e if you're interested, it's on Amazon. Cheers, Joe