Calculating <ψ(t)|x|ψ(t)> in a Harmonic Oscillator Potential

Rococo
Messages
67
Reaction score
9

Homework Statement



A particle in a harmonic oscillator potential in the following state after a time t:

## | ψ(t) > = \frac{1}{\sqrt{2}} [e^{(-iE_0 t/\hbar)} |ψ_0> + e^{(-iE_1 t/\hbar)} |ψ_1> ] ##

I want to write an expression for ## <ψ(t)| \hat{x} | ψ(t) > ##.

Homework Equations



The answer is meant to be:

## <ψ(t)| \hat{x} | ψ(t) > = \frac{1}{2} [ <ψ_0| \hat{x} | ψ_1> e^{-i(E_1 - E_0)t/\hbar)} + <ψ_1| \hat{x} | ψ_0> e^{-i(E_0 - E_1)t/\hbar)}] ##

The Attempt at a Solution


[/B]
## <ψ(t)| \hat{x} | ψ(t) > = \int{ψ^{*}(t) \hat{x} ψ(t)}##
## = \int{\frac{1}{\sqrt{2}} [ e^{(iE_0 t/\hbar)} ψ^{*}_0 + e^{(iE_1 t/\hbar)} ψ^{*}_1}] \hat{x} \frac{1}{\sqrt{2}}[ e^{-(iE_0 t/\hbar)} ψ_0 + e^{-(iE_1 t/\hbar)} ψ_1] ##

## = \int{\frac{1}{2} [ e^{(iE_0 t/\hbar)} ψ^{*}_0 \hat{x} e^{-(iE_0 t/\hbar)} ψ_0 + e^{(iE_0 t/\hbar)} ψ^{*}_0 \hat{x} e^{-(iE_1 t/\hbar)} ψ_1 + e^{(iE_1 t/\hbar)} ψ^{*}_1} \hat{x} e^{-(iE_0 t/\hbar)} ψ_0 + e^{(iE_1 t/\hbar)} ψ^{*}_1} \hat{x} e^{-(iE_1 t/\hbar)} ψ_1 ##

## = \frac{1}{2} [<ψ_0| \hat{x} | ψ_0 > + e^{-i(E_1 - E_0)t/\hbar} <ψ_0| \hat{x} | ψ_1 > + e^{i(E_1 - E_0)t/\hbar} <ψ_1| \hat{x} | ψ_0 > + <ψ_1| \hat{x} | ψ_1> ]##

This is a different answer than it should be, where am I going wrong?
 
Physics news on Phys.org
No, it is correct. You are just missing one step of simplification.
 
Orodruin said:
No, it is correct. You are just missing one step of simplification.

Do you say that ##<ψ_0| \hat{x} | ψ_0 >## and ##<ψ_1| \hat{x} | ψ_1 >## are expectation values of position, which for the simple harmonic oscillator, are zero?
 
I did not say it, I wanted you to do it.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top