blackbear
- 39
- 0
Homework Statement
Let L(x) a linear operator defined by setting the diagonal elements of x to zero. What will be the representation of this operator to the following basis set? x E X. X denote the set of all real symmetric 3x3 matrices.Homework Equations
L*y=x
L=x*inv(y)
<br /> \begin{pmatrix} a & e & d \\ e & b & f \\d & f & c \end{pmatrix} <br /> X1:<br /> \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}<br />
X2:<br /> \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix}<br />
X3<br /> \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{pmatrix}<br />
X4<br /> \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{pmatrix}<br />
X5<br /> \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}<br />
X6<br /> \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{pmatrix}<br />
The Attempt at a Solution
To get the question set right, I am assuming I am to find a linear operator whose functionality is as follows:
Brain storming: L(symmetric matrix) * Y( Any symmetric matrix) = X(matrix, whose diagonal is zero)...is this right? So Y has to be symmetric and L, Y and X has to be from the same basis. all I know is the basis set. Any hints please?
Last edited: