MHB Calculating sin ( 0.5 arcsinx)

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Sin
Click For Summary
Two different trigonometric identities were used to calculate sin(0.5 arcsinx), resulting in two distinct expressions. The first identity yielded the result $$\frac{x}{\sqrt{2(1+\sqrt{1-x^2})}}$$, while the second gave $$\sqrt{\frac{1}{2}(1-\sqrt{1-x^2})}$$. Despite appearing different, further algebraic manipulation shows these expressions are equivalent, although their graphs differ due to the handling of absolute values and domain restrictions. The discussion highlights potential issues with graphing tools like Wolfram Alpha, particularly regarding imaginary numbers and odd roots of negative values. Ultimately, both expressions represent the same mathematical relationship under specific conditions.
Dethrone
Messages
716
Reaction score
0
I did this question using two different trig identities, each of which gave me a different answer when I graphed them on Wolfram Alpha.

1. First identity: sinx = 2sin(0.5x)cos(0.5x)
isolating for sin(0.5x):

sin(0.5x) = (sinx) / (2cos(0.5x))

The question wants sin (0.5 arcsinx):

Applying the formula, we get the answer to be
$$\frac{x}{\sqrt{2(1+\sqrt{1-x^2})}}$$

2. Second identity: sin2x = 0.5 (1-cos2x),
or sin20.5x = 0.5(1-cosx)

Applying that formula, we get the answer to be
$$\sqrt{\frac{1}{2}(1-\sqrt{1-x^2})}$$

Why are the two answers different? Is my algebra wrong somewhere, or is this an issue of domain or something?
 
Mathematics news on Phys.org
Rido12 said:
I did this question using two different trig identities, each of which gave me a different answer when I graphed them on Wolfram Alpha.

1. First identity: sinx = 2sin(0.5x)cos(0.5x)
isolating for sin(0.5x):

sin(0.5x) = (sinx) / (2cos(0.5x))

The question wants sin (0.5 arcsinx):

Applying the formula, we get the answer to be
$$\frac{x}{\sqrt{2(1+\sqrt{1-x^2})}}$$

2. Second identity: sin2x = 0.5 (1-cos2x),
or sin20.5x = 0.5(1-cosx)

Applying that formula, we get the answer to be
$$\sqrt{\frac{1}{2}(1-\sqrt{1-x^2})}$$

Why are the two answers different? Is my algebra wrong somewhere, or is this an issue of domain or something?
They are the same
$$\displaystyle \frac{x}{\sqrt{2(1+\sqrt{1-x^2})}}= \frac{x \sqrt{1 -\sqrt{ 1-x^2}}}{\sqrt{2(1+\sqrt{1-x^2})}\sqrt{1 - \sqrt{1-x^2}}}= \frac{ x \sqrt{ 1 - \sqrt{ 1 -x^2 }} }{ \sqrt{ 2 ( 1 - (1 - x^2 ))} }= \sqrt{ \frac{1}{2} ( 1 - \sqrt{1 - x^2 } ) } $$

Note that $ \sqrt{x^2} = \mid x \mid $
 
It has been my experience that W|A does not handle imaginary numbers correctly with respect to graphing or odd roots of real negative values. Try graphing $$y=x^{\frac{1}{3}}$$ and you get garbage for negative values of $x$.
 
Above, I used sin20.5x = 0.5(1-cosx), but isolating $$\sin\left({x}\right) $$would give us |$$\sin\left({x}\right)$$|. And |$$\sin\left({x}\right)$$| is only equal to $$\sin\left({x}\right)$$ on intervals such as $$(0, \pi)$$ and $$(2\pi, 3\pi)$$. Why, then, do they yield the same answer?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
5K