Calculating the Age of an Ancient Boat: A Radioactive Decay Problem

AI Thread Summary
The discussion focuses on calculating the age of an ancient boat using carbon-14 decay. The original activity of carbon-14 in living matter is 0.250 Bq, while the sample from the boat shows an activity of 0.160 Bq. A method was proposed that involved calculating the ratio of the sample's activity to the original and multiplying it by the half-life of carbon-14, resulting in an estimated age of approximately 3700 years. However, concerns were raised about the validity of this method, suggesting that a more accurate approach would involve using the exponential decay formula and natural logarithms. The conversation emphasizes the importance of using proper decay equations for accurate age determination.
Iscariot
Messages
7
Reaction score
0
The carbon in living matter contains a fixed proportion of the radioactive isotope carbon-14. The carbon-14 in 1.00g of carbon from living matter has an activity of 0.250Bq. The half-life of carbon-14 is 5730. When a plant dies the proportion of carbon-14 decreases due to radioactive decay. A 1.00g sample of carbon from an ancient boat has an activity of 0.160Bq. Determine the age of the board.

Here's how I solved it...

Original Activity = 0.25Bq
Activity of Sample = 0.16Bq

Then I just calculated what's that as a ratio of the original activity...

0.16/0.25 = 0.64

Then multiplied the half time by this number:

5730 * 0.64 = 3666 years ~ 3700 years

Which is the correct answer. However this seems like a bit of a fluke. Especially since I've got a feeling I should be using this formula:

x = x(original) ^-(lamda)*(time)

Can anyone put my mind at ease, was my answer a fluke or is that a valid method to calculating the answer?
 
Physics news on Phys.org
Well if you do it your way you aren't really considering the fact that it's an exponential decay.
I would say that you would use the activity equation given by:
A=A_oe^-^\lambda ^t
It's just as easy. Just rearrange it and then take the natural log of both sides to solve for t.
Where \lambda=ln(2)/T_1_/_2
 
Last edited:
Thanks a lot!
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top