roam
- 1,265
- 12
Homework Statement
I am trying to calculate the curvature of a curve given by the position function:
\vec{r}(t)= sin(t) \vec{i} + 2 \ cos (t) \ vec{j}
The correct answer must be:
\kappa (t) = \frac{2}{(cos^2(t) + 4 \ sin^2 (t))^{3/2}}
I tried several times but I can't arrive at this answer.

Homework Equations
Curvature is given by:
\kappa(t) = \frac{||T'(t)||}{||r'(t)||}
Where
T (t) = \frac{r'(t)}{||r'(t)||}
The Attempt at a Solution
r'(t) = \left\langle cos(t), \ -2 sin(t) \right\rangle
||r'(t)|| = \sqrt{cos^2(t) + (2 \ sin(t))^2} = \sqrt{3 \ sin^2t+1}
Therefore
T = \frac{cos(t)}{\sqrt{3 \ sin^2 (t) +1}} \ \vec{i}, \ \frac{-2 \ sin(t)}{\sqrt{3 \ sin^2 (t) +1}} \vec{j}
\frac{dT}{dt} = \frac{-4 \ sin(t)}{(3 \ sin^2(t) +1)^{(3/2)}} \ \vec{i} + \frac{-2 \cos (t)}{(3 \ sin^2(t) +1)^{(3/2)}} \ \vec{j}
||T'(t)|| = \sqrt{\left( \frac{-4 \ sin(t)}{3 \ sin^2(t) + 1)^{3/2}} \right)^2 + \left( \frac{-2 \cos (t)}{(3 \ sin^2(t) + 1)^{3/2}} \right)^2}
= \sqrt{ \frac{16 \ sin^2(t)}{(3 \ sin^2 t)^3} + \frac{4 \ cos^2(t)}{(3 \ sin^2 t)^3}}
Putting this in the equation given
\kappa = \sqrt{ \frac{16 \ sin^2(t)}{(3 \ sin^2 t)^3} + \frac{4 \ cos^2(t)}{(3 \ sin^2 t)^3}}. \frac{1}{\sqrt{3 \ sin^2t+1}}
But I can't see how this can be simplified to get to the correct answer. I appreciate any guidance.
Last edited: