Calculating the Extreme Value of a Functional with Given Boundary Conditions

  • Thread starter Thread starter skrat
  • Start date Start date
  • Tags Tags
    Functional Value
skrat
Messages
740
Reaction score
8

Homework Statement


We have functional ##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx## where ##y\in C^1(\mathbb{R})## and ##y(-1)=1## and ##y(1)=3##.
a) Calculate ##A(y)## if graph for ##y## is line segment.
b) Calculate the extreme value of ##A(y)## for that ##y##. That does it represent?


Homework Equations





The Attempt at a Solution



a)

Since ##y## is line segment I GUESS it can be written as ##y=kx+n##. The functional is therefore calcualted as:

##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx=A(y)=\int_{-1}^{1}(4kx+4n+16k^2)dx=32k^2+8n##

Because ##y(-1)=1## and ##y(1)=3##, ##k=1## and ##n=2##, so ##A(y)=48##

b)

We have a so called Euler–Lagrange equation. Let's say that ##L=4y+({y}')^2##.

##\frac{\partial L}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial L}{\partial {y}'}=0##

##4-2{y}''=0##

##y=x^2+Cx+D##

For ##y(-1)=1## we get an equation saying that ##D=C## and from ##y(1)=3## another one saying ##C+D=2## therefore ##C=D=1##.

So finally ##y(x)=x^2+x+1## and ##A(y)= 0##. ##y(x)## is quadratic function and extreme value of functional represents minimum, i guess?
 
Physics news on Phys.org
skrat said:

Homework Statement


We have functional ##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx## where ##y\in C^1(\mathbb{R})## and ##y(-1)=1## and ##y(1)=3##.
a) Calculate ##A(y)## if graph for ##y## is line segment.
b) Calculate the extreme value of ##A(y)## for that ##y##. That does it represent?


Homework Equations





The Attempt at a Solution



a)

Since ##y## is line segment I GUESS it can be written as ##y=kx+n##.The functional is therefore calcualted as:

##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx=A(y)=\int_{-1}^{1}(4kx+4n+16k^2)dx=32k^2+8n##

Because ##y(-1)=1## and ##y(1)=3##, ##k=1## and ##n=2##, so ##A(y)=48##

b)

We have a so called Euler–Lagrange equation. Let's say that ##L=4y+({y}')^2##.

##\frac{\partial L}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial L}{\partial {y}'}=0##

##4-2{y}''=0##

##y=x^2+Cx+D##

For ##y(-1)=1## we get an equation saying that ##D=C## and from ##y(1)=3## another one saying ##C+D=2## therefore ##C=D=1##.

So finally ##y(x)=x^2+x+1## and ##A(y)= 0##.

Are you sure? 4y + (y')^2 = 4x^2 + 4x + 4 + (2x + 1)^2 = 2(2x + 1)^2 + 3 > 0, so A(x^2 + x + 1) > 0.
 
Ahhh, you are right... I made A mistake in my notes.. I used ##4y-({y}')^2##...

Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top