Calculating the Limit of a Complex Expression

blob84
Messages
25
Reaction score
0

Homework Statement



\lim_{x \rightarrow 0} \frac{(1+tan(3x))^{1/3} x^2}{log_2(arcsin(x^3)+1)}

Homework Equations





The Attempt at a Solution



i tried to use l'hopital twice but i get a very weird function, so there another way to calculate it?
 
Physics news on Phys.org
blob84 said:

Homework Statement



\lim_{x \rightarrow 0} \frac{(1+tan(3x))^{1/3} x^2}{log_2(arcsin(x^3)+1)}

Homework Equations


The Attempt at a Solution



i tried to use l'hopital twice but i get a very weird function, so there another way to calculate it?

I'd be interested to see these weird functions. l'Hopital is the best way to do it. There is a trick that might help you. lim x->0 (1+tan(3x))^(1/3)=1. That's pretty harmless. I wouldn't include it in the l'Hopital treatment. In general if a factor of your function has a nonzero finite limit, just set it aside and concentrate on the rest.
 
thank you Dick,
i get:
Dx^2= 2x,
D log_{2}(arcsin(x^3)+1)=\frac{3x^2}{log2(arcsin(x^3)+1)\sqrt{1-x^6}},
\lim_{x \to 0} \frac{2x}{\frac{3x^2}{log{2} (arcsin(x^3)+1) \sqrt{1-x^6} } } = <br /> \frac{2}{3}\lim_{x \to 0} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x} →<br /> \frac{2}{3}\lim_{x \to 0^-} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x}= \frac{log2}{0^-} = -\infty \vee<br /> \frac{2}{3}\lim_{x \to 0^+} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x} = \frac{log2}{0^+}=+\infty<br />
 
blob84 said:
thank you Dick,
i get:
Dx^2= 2x,
D log_{2}(arcsin(x^3)+1)=\frac{3x^2}{log2(arcsin(x^3)+1)\sqrt{1-x^6}},
\lim_{x \to 0} \frac{2x}{\frac{3x^2}{log{2} (arcsin(x^3)+1) \sqrt{1-x^6} } } = <br /> \frac{2}{3}\lim_{x \to 0} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x} →<br /> \frac{2}{3}\lim_{x \to 0^-} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x}= \frac{log2}{0^-} = -\infty \vee<br /> \frac{2}{3}\lim_{x \to 0^+} \frac{log{2} (arcsin(x^3)+1) \sqrt{1-x^6}} {x} = \frac{log2}{0^+}=+\infty<br />

Looks ok to me!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top