Calculating Uncertainties of Measured quantities (Physics)

Click For Summary
SUMMARY

This discussion focuses on calculating uncertainties in measured quantities in physics, specifically using the example of acceleration and distance. The measured values include d1 = 2.53 cm ± 0.05 cm, d2 = 1.753 m ± 0.001 m, and v1 = 1.55 m/s ± 0.15 m/s. The formula for calculating the uncertainty in a derived quantity, such as z = x + y, is provided, emphasizing the need to consider the relative errors of the individual measurements. The discussion highlights that there is no universal formula for error calculation; the appropriate method depends on the experimental context.

PREREQUISITES
  • Understanding of basic physics concepts, particularly kinematics
  • Familiarity with uncertainty propagation techniques
  • Knowledge of error analysis in experimental measurements
  • Ability to perform calculations involving significant figures
NEXT STEPS
  • Study the principles of uncertainty propagation in physics experiments
  • Learn how to apply the formula for error calculation in different scenarios
  • Explore examples of kinematic equations and their applications in real-world problems
  • Investigate advanced topics in error analysis, such as Monte Carlo simulations
USEFUL FOR

Students and professionals in physics, engineers conducting experiments, and anyone involved in data analysis requiring precise measurements and uncertainty calculations.

Joystar77
Messages
122
Reaction score
0
d1 = 2.53 cm +/- .05 cm

d2 = 1.753 m +/- .001 m

0 = 23.5 degrees +/- .5 degrees

v1 = 1.55 m/s +/- .15 m/s

Using the measured quantities above, calculate the following. Express the uncertainty calculated value.

a = 4 v1^2 / d2

a = 4 (1.55 m/s +/-.15 m/s)^2 / 1.753 m +/- .001 m

a = 6.8 m/s ^2 / 1.754 m

a = 13.6 m/s / 1.754 m

a = 7.753705815

------------------------------------------------------------------------------------------------------

d3 = 4 (d1 + d2)d3 = 4 (2.53 cm +/- .05 cm) + (1.753 m +/- .001 m)d3 = 10.12 cm +/- .2 cm + 7.012 m +/- .004 md3 = 10.32 cm + 7.016 m

I tried to work this problem out, but I don't understand it and think it's not right. Someone please help me with this problem.
 
Last edited by a moderator:
Physics news on Phys.org
Joystar1977 said:
d1 = 2.53 cm +/- .05 cm

d2 = 1.753 m +/- .001 m

0 = 23.5 degrees +/- .5 degrees

v1 = 1.55 m/s +/- .15 m/s

Using the measured quantities above, calculate the following. Express the uncertainty calculated value.

d3 = 4 (d1 + d2)

d3 = 4 (2.53 cm +/- .05 cm) + (1.753 m +/- .001 m)

d3 = 10.12 cm +/- .2 cm + 7.012 m +/- .004 m

d3 = 10.32 cm + 7.016 m

I tried to work this out, but I don't think it's right so someone please help me.
There is no single formula that you can use to get errors. Which you use depends on what kind of experiment you are doing and what data you have. One of the typical ones in use is this:

Given x, y and their respective errors [math]\Delta x,~\Delta y[/math] and the equation z = x + y you can calculate
[math]\frac{\Delta z}{z} = \sqrt{ \left ( \frac{\Delta x}{x} \right ) ^2 + \left ( \frac{\Delta y}{y} \right ) ^2}[/math]

You can use the same formula for z = xy or z = x/y as well. If you have more variables, such as z = x + y + w just add a term for w under the square root.

-Dan
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
4
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
12K