latentcorpse
- 1,411
- 0
So we have an action
I[x,p;e]=\int d \lambda \left( \dot{x}^\mu p_\mu - e (p^2+m^2) \right)
where e is the einbein and p^2=g^{\mu \nu} p_\mu p_\nu
We're asked to find \delta I given the variations
\delta x^\mu=\epsilon(\lambda) \xi^\mu(x) and \delta p_\mu = - \epsilon(\lambda) \partial_\mu \epsilon^\nu p_\nu
So I find that \delta \dot{x}^\mu = \dot{\epsilon}(\lambda) \xi^\mu(x)
and we have that
\delta I = \int d \lambda \left( \delta ( \dot{x}^\mu p_\mu ) - \delta ( ep^2+em^2) \right)
=\int d \lambda \left( \delta \dot{x}^\mu p_\mu + \dot{x}^\mu \delta p_\mu -2e g^{\mu \nu} p_\mu \delta p_\nu \right) since \delta m=0
Then, this gives by substitution
= \int d \lambda \left( \dot{\epsilon} \xi^\mu p_\mu - \epsilon \dot{x}^\mu \partial_\mu \xi^\nu p_\nu + 2eg^{\mu \nu} p_\mu \epsilon \partial_\nu \xi^\rho p_\rho \right)
But this appears to be going "off course" so I reckon I've messed up but I can't see anything wrong with it!
I[x,p;e]=\int d \lambda \left( \dot{x}^\mu p_\mu - e (p^2+m^2) \right)
where e is the einbein and p^2=g^{\mu \nu} p_\mu p_\nu
We're asked to find \delta I given the variations
\delta x^\mu=\epsilon(\lambda) \xi^\mu(x) and \delta p_\mu = - \epsilon(\lambda) \partial_\mu \epsilon^\nu p_\nu
So I find that \delta \dot{x}^\mu = \dot{\epsilon}(\lambda) \xi^\mu(x)
and we have that
\delta I = \int d \lambda \left( \delta ( \dot{x}^\mu p_\mu ) - \delta ( ep^2+em^2) \right)
=\int d \lambda \left( \delta \dot{x}^\mu p_\mu + \dot{x}^\mu \delta p_\mu -2e g^{\mu \nu} p_\mu \delta p_\nu \right) since \delta m=0
Then, this gives by substitution
= \int d \lambda \left( \dot{\epsilon} \xi^\mu p_\mu - \epsilon \dot{x}^\mu \partial_\mu \xi^\nu p_\nu + 2eg^{\mu \nu} p_\mu \epsilon \partial_\nu \xi^\rho p_\rho \right)
But this appears to be going "off course" so I reckon I've messed up but I can't see anything wrong with it!