Calculating work and heat transfer in this Carnot process

approx12
Messages
11
Reaction score
6
Homework Statement
I'm given the fundamental equation ##UN^{1/2}V^{3/2}=\alpha (S-R)^3##, where ##A=2*10^{-2} (K^3 m^{9/2} J^3)##. Two moles of this fluid are used as the auxiliary system in a Carnot cycle, operating between two reservoirs of ##T_1=373K## and ##T_2=273K## In the first isothermal expansion ##10^6 J## is extracted from the high-temperature reservoir.
Find the heat transfer and the work transfer for each of the four processes in the Carnot cycle.
Relevant Equations
##UN^{1/2}V^{3/2}=A(S-R)^3##
Hey guys! This is problem from Callens Thermodynamics textbook and I'm stuck with it.

My goal was to get a expression for the entropy ##S## which is dependent on ##T## so I can move into the ##T-S##-plane to do my calculations:
I startet by expressing the fundamental equation as a function of ##S(U,V,N)## and then computing the partial derivative with respect to ##U##: $$\frac{\partial S}{\partial U}=\frac{1}{T}=\frac{1}{3\alpha}U^{-2/3}N^{1/6}V^{1/2}$$ Through that I'm able to get a expression of ##U(T,V,N)## which helps me to express ##S## as a function of ##T,V## and ##N##. Rearranging the partial derivative and plugging back into the original equation I get: $$S(T,V,N)=R+\sqrt{\frac{T}{3}}\frac{1}{\alpha^{3/2}}V^{3/4}N^{1/4}$$

Now it shouldn't be so hard to calculate the the heat and work transfer but what I'm missing is the volume ##V##. It's not given in the problem statement and without it I can't calculate ##S## so I'm stuck with my calculations in the ##T-S##-plane.

I must be missing something here but I can't see what it is. I would appreciate any guidance in the right direction!
 
Physics news on Phys.org
I would start out by deriving the equation of state.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top