Calculating work and heat transfer in this Carnot process

Click For Summary
The discussion revolves around a problem from Callen's Thermodynamics textbook regarding the Carnot process. The user successfully derived an expression for entropy (S) as a function of temperature (T), volume (V), and particle number (N), using the fundamental equation and partial derivatives. However, the user is unable to proceed with calculating heat and work transfer due to the absence of volume (V) in the problem statement. They suggest that deriving the equation of state might be a necessary step to resolve the issue. Guidance is sought to move forward with the calculations in the T-S plane.
approx12
Messages
11
Reaction score
6
Homework Statement
I'm given the fundamental equation ##UN^{1/2}V^{3/2}=\alpha (S-R)^3##, where ##A=2*10^{-2} (K^3 m^{9/2} J^3)##. Two moles of this fluid are used as the auxiliary system in a Carnot cycle, operating between two reservoirs of ##T_1=373K## and ##T_2=273K## In the first isothermal expansion ##10^6 J## is extracted from the high-temperature reservoir.
Find the heat transfer and the work transfer for each of the four processes in the Carnot cycle.
Relevant Equations
##UN^{1/2}V^{3/2}=A(S-R)^3##
Hey guys! This is problem from Callens Thermodynamics textbook and I'm stuck with it.

My goal was to get a expression for the entropy ##S## which is dependent on ##T## so I can move into the ##T-S##-plane to do my calculations:
I startet by expressing the fundamental equation as a function of ##S(U,V,N)## and then computing the partial derivative with respect to ##U##: $$\frac{\partial S}{\partial U}=\frac{1}{T}=\frac{1}{3\alpha}U^{-2/3}N^{1/6}V^{1/2}$$ Through that I'm able to get a expression of ##U(T,V,N)## which helps me to express ##S## as a function of ##T,V## and ##N##. Rearranging the partial derivative and plugging back into the original equation I get: $$S(T,V,N)=R+\sqrt{\frac{T}{3}}\frac{1}{\alpha^{3/2}}V^{3/4}N^{1/4}$$

Now it shouldn't be so hard to calculate the the heat and work transfer but what I'm missing is the volume ##V##. It's not given in the problem statement and without it I can't calculate ##S## so I'm stuck with my calculations in the ##T-S##-plane.

I must be missing something here but I can't see what it is. I would appreciate any guidance in the right direction!
 
Physics news on Phys.org
I would start out by deriving the equation of state.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
13
Views
3K
Replies
8
Views
2K
Replies
7
Views
3K
Replies
2
Views
2K
Replies
30
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K