Calculating work and heat transfer in this Carnot process

approx12
Messages
11
Reaction score
6
Homework Statement
I'm given the fundamental equation ##UN^{1/2}V^{3/2}=\alpha (S-R)^3##, where ##A=2*10^{-2} (K^3 m^{9/2} J^3)##. Two moles of this fluid are used as the auxiliary system in a Carnot cycle, operating between two reservoirs of ##T_1=373K## and ##T_2=273K## In the first isothermal expansion ##10^6 J## is extracted from the high-temperature reservoir.
Find the heat transfer and the work transfer for each of the four processes in the Carnot cycle.
Relevant Equations
##UN^{1/2}V^{3/2}=A(S-R)^3##
Hey guys! This is problem from Callens Thermodynamics textbook and I'm stuck with it.

My goal was to get a expression for the entropy ##S## which is dependent on ##T## so I can move into the ##T-S##-plane to do my calculations:
I startet by expressing the fundamental equation as a function of ##S(U,V,N)## and then computing the partial derivative with respect to ##U##: $$\frac{\partial S}{\partial U}=\frac{1}{T}=\frac{1}{3\alpha}U^{-2/3}N^{1/6}V^{1/2}$$ Through that I'm able to get a expression of ##U(T,V,N)## which helps me to express ##S## as a function of ##T,V## and ##N##. Rearranging the partial derivative and plugging back into the original equation I get: $$S(T,V,N)=R+\sqrt{\frac{T}{3}}\frac{1}{\alpha^{3/2}}V^{3/4}N^{1/4}$$

Now it shouldn't be so hard to calculate the the heat and work transfer but what I'm missing is the volume ##V##. It's not given in the problem statement and without it I can't calculate ##S## so I'm stuck with my calculations in the ##T-S##-plane.

I must be missing something here but I can't see what it is. I would appreciate any guidance in the right direction!
 
Physics news on Phys.org
I would start out by deriving the equation of state.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top