knut-o
- 16
- 0
Homework Statement
1. I got the wavefunctions:\psi _0=(\frac{m\omega }{\pi\hbar})^{\frac{1}{4}}\cdot e^{-\frac{m\omega}{2\hbar}\cdot x^2},
and \psi _1=(\frac{m\omega }{\pi\hbar})^{\frac{1}{4}}\cdot \sqrt{\frac{2m\omega }{\hbar}}\cdot e^{-\frac{m\omega}{2\hbar}\cdot x^2}.
Also recomended by the task given to introduce two new variables:
\xi =\sqrt{\frac{m\omega }{\hbar}}\cdot x\\ \alpha=(\frac{m\omega}{\pi\hbar})^{\frac{1}{4}}
Now, I am tolk to find <x>, <p>, <x2> and <p2>.
Homework Equations
I am informed how to find <x> and <p>:
<x>=\int _{-\inf} ^{\inf} x|\psi(x,t)|^2dx=\inf\psi*(x)\cdot \psi dx
<p>=-i\hbar \int \psi* \cdot\frac{\partial\psi}{\partial x}dx
I also wonder what the * stands for, it's not a normal multiplication-sign is it?
The Attempt at a Solution
What I am mostly curious about, is how do I find <x2> and <p2>?
I have also found:
\psi _0=\alpha\cdot e^{-\frac{\xi ^2}{2}}\\ \psi _1=\alpha\cdot\xi\cdot e^{-\frac{\xi ^2}{2}}.
Do I, when I calculate
<x>=\int _{-\inf} ^{\inf} x|\psi(x,t)|^2dx=\inf\psi*(x)\cdot \psi dx get insterted for x x=\xi \cdot\sqrt{\frac{\hbar}{m\omega}} and \frac{d\xi}{dx}=\sqrt{\frac{m\omega}{\hbar}}\Rightarrow dx=d\xi\cdot\sqrt{\frac{\hbar}{m\omega}? Giving even more variables to work with in thei ntegratian/calculation?
And to find <x^2>, do I simply just square the function standing inside there, giving me [/tex]|\psi |^4[/tex] and the function I calculate for <p> and just square it?
I am so not getting this thing..