Calculation Involving Projection Tensor in Minkowski Spacetime

crime9894
Messages
5
Reaction score
2
Homework Statement
I am asked to calculate the expression in Minkowski spacetime
Relevant Equations
Projection tensor ##P^{\alpha\beta}=\eta^{\alpha\beta}+U^{\alpha}U^{\beta}##
4-velocity ##U^{\mu}##
Minkowski Metric ##\eta^{\alpha\beta}## signature ##(-+++)##
In Minkowski spacetime, calculate ##P^{\gamma}_{\alpha}U^{\beta}\partial_{\beta}U^{\alpha}##.

I had calculated previously that ##P^{\gamma}_{\alpha}=\delta^{\gamma}_{\alpha}+U_{\alpha}U^{\gamma}##
When I subsitute it back into the expression
##P^{\gamma}_{\alpha}U^{\beta}\partial_{\beta}U^{\alpha}##
##=(\delta^{\gamma}_{\alpha}+U_{\alpha}U^{\gamma})U^{\beta}\partial_{\beta}U^{\alpha}##
##=U^{\beta}\partial_{\beta}U^{\gamma}+U_{\alpha}U^{\gamma}U^{\beta}\partial_{\beta}U^{\alpha}##
But I think hit a dead end. Could it be further simplified?

Later, I look back into my lecture slides again and I saw this "geodesics equation ##U^{\upsilon}\nabla_{\upsilon}U^{\mu}=0##" written at a corner. I haven't reach geodesics yet and I can't find relevant source on confirming this equation.

I believe it reduce to ##U^{\upsilon}\partial_{\upsilon}U^{\mu}=0## in flat spacetime and would one-shot my problem.
Is this the correct approach instead? If so, how do I prove the equation?
 
Physics news on Phys.org
Note that ##U^{\nu} \partial_{\nu} U^{\mu}=\mathrm{D}_{\tau} U^{\mu}## is the "material time derivative". This is 0 for "dust", i.e., for non-interacting "particles" only. For an ideal or viscous fluid it's not!

Concerning implification of your expression, note that ##U_{\alpha} U^{\alpha}=-1=\text{const}##. What does that imply for the 2nd term in your result?
 
vanhees71 said:
Concerning implification of your expression, note that ##U_{\alpha} U^{\alpha}=-1=\text{const}##. What does that imply for the 2nd term in your result?
I see! Thank you.
I could prove ##U_{\alpha}\partial_{\beta}U^{\alpha}=0## and eliminate second term.
As for the first term, I don't think it could proceed further. Am I done?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top