I Calculation of ideal ignition temperature for a D-T fusion reaction

  • I
  • Thread starter Thread starter freddie_mclair
  • Start date Start date
Click For Summary
The discussion focuses on calculating the ideal ignition temperature for a Deuterium-Tritium (D-T) fusion reaction, with a literature value of 4.4 keV compared to a calculated value of 5.2 keV. The calculations involve equating alpha particle heating to Bremsstrahlung losses, utilizing specific equations for reactivity and constants related to electron charge and mass. There is a request for troubleshooting potential errors in unit conversions from keV to Joules or Kelvin. Participants emphasize the importance of consistent assumptions regarding losses and the definition of ideal temperature when referencing literature. The conversation highlights the need for accurate calculations to achieve steady-state power balance in the plasma.
freddie_mclair
Messages
43
Reaction score
2
TL;DR
Calculating the ideal ignition temperature for a D-T fusion reaction
I've been trying to calculate the ideal ignition temperature for a 50-50% Deuterium-Tritium (D-T) reaction. In the literature this value is ##4.4##keV and I'm getting ##5.2##keV. Here's how I'm carrying out my calculations.

This value can be calculated by making the alpha particle heating, ##S_{\alpha}=(1/4)n^2 E_{\alpha}\langle \sigma v \rangle##, equal to the Bremsstrahlung losses, ##S_B=C_B n^2 \sqrt{T}##:

$$S_{\alpha}=S_B \Leftrightarrow E_{\alpha}\langle \sigma v \rangle-4C_B \sqrt{T}=0$$

The value I get for ##C_B=(\sqrt{2}/3\pi^{5/2})(e^6/(\varepsilon_0^3 c^3 h m_e^{3/2})## is ##4.22\cdot10^{-29}## ##\sqrt{kg}\, m^4\, s^{-2}##, where ##e## is the electron charge, ##\varepsilon_0## the vacuum permittivity, ##h## Planck's constant and ##m_e## the electron mass. The alpha particle energy is ##E_{\alpha}=3.5##keV. For the reactivity, ##\langle \sigma v \rangle##, which is a function of ##T##, I have been using an equation derived analytically from "Plasma Physics and Fusion Energy book by J.P. Freidberg, 2007":

$$ \langle \sigma v \rangle = \frac{4 \sigma_m}{\sqrt{3}}\sqrt{\frac{2T_m}{m_r}} \left(\frac{T_m}{T}\right)^{2/3}e^{-3(T_m/T)^{1/3}+2} $$

Where ##\sigma_m = 5.03##barns and ##T_m = 296##keV. ##m_r## is the reduced mass of the deuterium and tritium, which is given by ##m_r=(m_D m_T)/(m_D + m_T)##, where ##m_D=2.0141u##, ##m_T=3.01605u## and ##u=1.660\cdot 10^{-28}##kg.

Here are all elements for calculating the ideal ignition temperature, but I feel that I'm messing up somewhere the conversions from keV to Joule or Kelvin.

Can someone help me to troubleshoot what I'm doing wrong? Or, do you indeed get the same value as me?

Thanks in advance!
 
Last edited:
Physics news on Phys.org
You can plug all these things in WolframAlpha and let it check your calculations. It will do the unit conversions for you.
 
freddie_mclair said:
TL;DR Summary: Calculating the ideal ignition temperature for a D-T fusion reaction

In the literature this value is keV and I'm getting keV.
When one refers to the literature, does one mean "Plasma Physics and Fusion Energy book by J.P. Freidberg, 2007", or some other literature. One would need to be sure to include the same assumptions with respect to the losses and definition of ideal temperature.

1 eV is ~ 11604.5 K, 1 keV ~ 11604500 K
One can refer to NIST values/constants
https://physics.nist.gov/cgi-bin/cu...=ev&To=k&Action=Convert+value+and+show+factor
 
Ideal ignition corresponds to the condition of steady state power balance in the plasma
assuming negligible heat conduction losses and no external heating, considering only Bremsstrahlung losses. Therefore, no losses transport losses due to heat conduction which are normally quantified by ##S_{th}=3nT##.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...