Calculus and set of zeros help

  • Thread starter Thread starter priscilla98
  • Start date Start date
  • Tags Tags
    Calculus Set
priscilla98
Messages
93
Reaction score
0

Homework Statement



The set of zeros of f (x) = x^3 + 4x^2 + 4x is

A) {-2}
B) {0, -2}
C) {0, 2}
D) {2}
E) {2, -2}


2. The attempt at a solution

f (x) = x^3 + 4x^2 + 4x
f (x) = (x^2 + 2x)(x + 2)
f (x) = x(x + 2)(x + 2)

x = 0 and x = -2. Is the answer B?
 
Physics news on Phys.org


I would appreciate the help, thanks a lot. I'm pretty sure that the answer is B, if not then you can can correct me.
 


Yes, the answer is B.
 


Ok thanks a lot. Have a good weekend
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top