sit.think.solve
- 9
- 0
Suppose that
<br /> \alpha_1,...,\alpha_n<br />
are positive numbers. Show that
<br /> \int_{1}^{\infty}...\int_{1}^{\infty}\frac{dx_1...dx_n}{{x_1}^{\alpha_1}+...+{x_n}^{\alpha_n}}<\infty<br />
if
<br /> \frac{1}{\alpha_1}+...+\frac{1}{\alpha_n}<1<br />
<br /> \alpha_1,...,\alpha_n<br />
are positive numbers. Show that
<br /> \int_{1}^{\infty}...\int_{1}^{\infty}\frac{dx_1...dx_n}{{x_1}^{\alpha_1}+...+{x_n}^{\alpha_n}}<\infty<br />
if
<br /> \frac{1}{\alpha_1}+...+\frac{1}{\alpha_n}<1<br />