Calling kinetics experts: rate law from conductivity isnt possible?

Click For Summary
SUMMARY

The discussion centers on the challenges of deriving a rate law from conductivity measurements in the aqueous alkaline hydrolysis of halogenoalkanes. The reaction is characterized by a first-order rate law in both RX and OH-. Despite attempts to model the conductivity changes using exponential decay functions, the results do not align with recognizable integrated rate law plots, preventing the determination of a rate constant. The conversation highlights that while initial rates can yield a linear relationship, the slope does not correspond to expected values, indicating that conductivity data from ion exchanges may not be suitable for investigating reaction kinetics without proper fitting to the correct equations.

PREREQUISITES
  • Understanding of reaction kinetics and rate laws
  • Familiarity with conductivity measurements in chemical reactions
  • Proficiency in using Excel for data modeling and curve fitting
  • Knowledge of halogenoalkane hydrolysis reactions
NEXT STEPS
  • Research the application of exponential decay models in chemical kinetics
  • Learn about alternative methods for analyzing conductivity data in reaction kinetics
  • Explore the use of software tools for advanced curve fitting beyond Excel
  • Investigate the relationship between ion conductivities and reaction rates in aqueous solutions
USEFUL FOR

Chemists, chemical engineers, and researchers focused on reaction kinetics, particularly those working with conductivity measurements in aqueous reactions.

Miffymycat
Messages
47
Reaction score
0
Calling kinetics experts: rate law from conductivity isn't possible!?

Consider the usual primary halogenoalkane aqueous alkaline hydrolysis reaction

RX + OH- --> ROH + X-

We know the rate law is first order in RX and OH-. We could separately represent the drop in OH- conductivity as an exponential decay with a constant half-life (ΛoOH-e-kt) and the rise of X- conductivity as the inverse function of this (0.5ΛoOH-(1-e-kt), taking the conductivity of X- as 0.5x that of OH-.

In practice, using excess RX, the measured (or modeled) solution conductivity during hydrolysis is obviously the sum of the ion conductivities at any point in time. The mixture conductivity drop-off appears to be an exponential-type decay, but attempts to curve fit (albeit only in Excel) show it is not, nor does it fit a recognisable integrated rate law plot. One can therefore not obtain a rate constant or order from this progress curve, which is frustrating - unless I'm mistaken! {Its not the case for aqueous hydrolysis as this produces ions from neutral molecules rather than an exchange of ions and the graphs work fine}.

Furthermore, taking an initial rates approach and plotting initial (ΔΛ/t) vs Λfinal (over several initial concentrations, rather than a single Λ vs t curve as above) gives a straight line, but whose slope does not appear to be a simple multiple of the calculated k for OH- decay on its own. The stoichiometry is 1:1, so the rate of [OH-] decline = rate of [X-] growth, and I imagined the slope would therefore be k x ratio of ion conductivities ... but it's not. Its a smaller number.

Any thoughts please?
 
Chemistry news on Phys.org
Perhaps I am missing something, but

Ae^{-x} + \frac A 2 (1-e^{-x}) = \frac A 2 (1 + e^{-x})

doesn't look like something that can be fit to just e-x.
 
Agreed, and seems to support the idea that conductivity data from "ion-exchanges" can't be used to investigate reaction kinetics.

Any ideas on the significance of the slope for the linear plot?
 
Miffymycat said:
Agreed, and seems to support the idea that conductivity data from "ion-exchanges" can't be used to investigate reaction kinetics.

I never said that. You can use the conductivity, you just have to fit it to the right equation.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
11
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
6K