MHB Cameron V 's question at Yahoo Answers (Equality of linear maps)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Linear
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Prove:
for each i = 1, 2, ... n
than L1(vi) = L2(vi)
only if L1 = L2

I can this of the concept in my head and I think I understand it but I am having trouble actually putting the proof on paper. Any help is appreciated.
Thanks

Here is a link to the question:

{v1, v2, ... , vn} is a basis for V. L1 and L2 are two linear transformations mapping V into a vectorspace W.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Cameron V,

If $L_1=L_2$, trivially $L_1(v_i)=L_2(v_i)$ for all $i=1,\ldots,n$. On the other hand if $L_1(v_i)=L_2(v_i)$ for all $i=1,\ldots,n$, choose a generic $x\in V$. As $\{v_1,\ldots,v_n\}$ is a basis of $V$, $x=\alpha_1+\ldots +\alpha_n v_n$ for some scalars $\alpha_1,\ldots,\alpha_n$. Then, for all $x\in V$: $$\begin{aligned}L_1(x)&=L_1(\alpha_1v_1+\ldots +\alpha_n v_n)\\&=\alpha_1L_1(v_1)+\ldots +\alpha_n L_1(v_n)\\&=\alpha_1L_2(v_1)+\ldots +\alpha_n L_2(v_n)\\&=L_2(\alpha_1v_1+\ldots +\alpha_n v_n)\\&=L_2(x)\\&\Rightarrow L_1=L_2\end{aligned}$$ If you have further questions, you can post them in the http://www.mathhelpboards.com/f14/ section.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top