qwertyuiop23
- 9
- 0
So I need a motor that is able to provide \begin{equation}0.412Nm\end{equation} of continuous torque (to overcome rolling resistance).
A BLDC I have is rated at \begin{equation}285W\end{equation} and 4700Kv (rpm/V).
So I was wondering if my calculations are correct.
Using the relationship between Torque and Power and angular speed
<br /> \begin{equation}<br /> \begin{split}<br /> \omega &\approx 700rads^{-1} \approx 6700rpm\\<br /> T &= 0.412Nm \\<br /> P &= 285W<br /> \end{split}<br /> \end{equation}<br />
From this get the voltage from the motor specs
<br /> \begin{equation}<br /> \begin{split}<br /> V &= \frac{6700}{4700}\\<br /> &= 1.42V<br /> \end{split}<br /> \end{equation}<br />
So now using the fact that
<br /> \begin{equation}<br /> \begin{split}<br /> K_t &= \frac{1}{K_v}\\<br /> T &= K_t i<br /> \end{split}<br /> \end{equation}<br />
Therefore
<br /> \begin{equation}<br /> \begin{split}<br /> i &= K_v \times T\\<br /> &= 4700 \times 0.412\\<br /> &= 1936A<br /> \end{split}<br /> \end{equation}<br />
This result makes no sense because that is a tonne of current.
Assuming 100% efficiency (P = IV)
<br /> \begin{equation}<br /> \begin{split}<br /> 285 &= i \times V\\<br /> i &= 196A<br /> \end{split}<br /> \end{equation}<br />
Which again seems really really high.
Am I missing something somewhere? Will the motor not draw that amount of current at the given loads/speed? I am confused as I think the equations are correct...?
A BLDC I have is rated at \begin{equation}285W\end{equation} and 4700Kv (rpm/V).
So I was wondering if my calculations are correct.
Using the relationship between Torque and Power and angular speed
<br /> \begin{equation}<br /> \begin{split}<br /> \omega &\approx 700rads^{-1} \approx 6700rpm\\<br /> T &= 0.412Nm \\<br /> P &= 285W<br /> \end{split}<br /> \end{equation}<br />
From this get the voltage from the motor specs
<br /> \begin{equation}<br /> \begin{split}<br /> V &= \frac{6700}{4700}\\<br /> &= 1.42V<br /> \end{split}<br /> \end{equation}<br />
So now using the fact that
<br /> \begin{equation}<br /> \begin{split}<br /> K_t &= \frac{1}{K_v}\\<br /> T &= K_t i<br /> \end{split}<br /> \end{equation}<br />
Therefore
<br /> \begin{equation}<br /> \begin{split}<br /> i &= K_v \times T\\<br /> &= 4700 \times 0.412\\<br /> &= 1936A<br /> \end{split}<br /> \end{equation}<br />
This result makes no sense because that is a tonne of current.
Assuming 100% efficiency (P = IV)
<br /> \begin{equation}<br /> \begin{split}<br /> 285 &= i \times V\\<br /> i &= 196A<br /> \end{split}<br /> \end{equation}<br />
Which again seems really really high.
Am I missing something somewhere? Will the motor not draw that amount of current at the given loads/speed? I am confused as I think the equations are correct...?