Can a Discrete Random Variable's CDF Jump at Every Rational Number?

AI Thread Summary
The discussion centers on whether a discrete random variable's cumulative distribution function (CDF) can jump at every rational number. It argues that the definition of a discrete random variable should not depend on the topology of the value space, suggesting that if a CDF jumps at all rationals, it can still be considered discrete. The rationale emphasizes that there is no distinction between random variables taking values in integers versus those in rationals when topology is disregarded. The conversation also touches on the implications of having a dense set of jumps on the real line, likening it to Cantor's function. Ultimately, the conclusion drawn is that such a random variable may be classified as singular rather than absolutely continuous.
Postante
Messages
5
Reaction score
0
I have seen the following "extension" of discrete random variables definition, from:
pediaview.com/openpedia/Probability_distributions
(Abstract)
"... Equivalently to the above, a discrete random variable can be defined as a random variable whose cumulative distribution function (cdf) increases only by jump discontinuities—that is, its cdf increases only where it "jumps" to a higher value, and is constant between those jumps. The points where jumps occur are precisely the values which the random variable may take. The number of such jumps may be finite or countably infinite. The set of locations of such jumps need not be topologically discrete; for example, the cdf might jump at each rational number."
Do you agree with the statement that the cdf of a DRV jumps at each rational number?
 
Mathematics news on Phys.org
I'm inclined to agree, i.e. I think that a random variable whose cdf jumps at all the rationals can be called discrete.

The rationale? Well, the concept of random variable doesn't have anything to do with the topology of the space of values of rational numbers. It would be silly to require that the concept of a random variable being discrete depend on the topology of the value space.

And if you don't consider the topology, there's nothing to distinguish two random variables taking values in ℤ and a random variable taking values in ℚ. As the former is called discrete, so should the latter be.
 
The problem is as it follows:
"In cases more frequently considered, this set of possible values is a topologically discrete set in the sense that all its points are isolated points. But there are discrete random variables for which this countable set is dense on the real line (for example, a distribution over rational numbers)."
This means that the jumps are dense on the real line, like those of Cantor's function.
I believe that such a "discrete" rv actually is a continuous, but not "absolute continuous", random variable. It is a singular distribution (Lukacs: "Characteristic Functions", Griffin, 2nd Ed, 1970).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top