Can a 'Good Surface' Be Found for Any Continuous Vector Field?

HungryChemist
Messages
140
Reaction score
0
I am terribly sorry for not being able to write this simple equation in Latex form. (I will be really glad if someone can tell me where I can learn how to use Latex to write math symbol)

Let F' be a vector field given by F' = r r' (r' = radial unit vector) and also let p be a point on the space R distance away. Then one can imagine a sphere of radius of R (centered at origin). Now, every patch of this surface has normal vector n' that is in the same direction as F' at that point.

I hope I am being clear, the more specific example of above kind would be an electric field due to a single positive charge and gaussian surface(shperical) such that E dot dA will simply come out as magnitue of E times magnitude of dA. If the gaussian surface wasn't sphere former is not true. So let me call such surface a 'good surface'.

Now my question is...

Shouldn't there be such 'good surface' for any vector field that is continuous everywhere? If so how can one show it? Also how can one devise a methord of finding such surface that encloses point in question? In other words, given vector field and a point in that vector space, find the good ' surface'

Please, help me out carrying this utterly confused process...
 
Last edited:
Mathematics news on Phys.org
tex tags. [ tex ]mathstuff[ /tex ] without the spaces.
 
You want to find surfaces on which the vector field is everywhere perpendicular? Look up "conservative vector fields," and "equipotentials". The principle is that vector fields with the property you want uniquely define a scalar potential function, and its equipotential surfaces are everywhere normal to the vector field.

As for using TeX on the Physics Forum, the introduction is located here .
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top