Can a Square Coil Fit into a Round Solenoid?

  • Thread starter Thread starter nb121307
  • Start date Start date
  • Tags Tags
    Coil Hole Square
AI Thread Summary
A square coil with a side length of 1.75 cm is placed inside a solenoid with a radius of 2.82 cm and a length of 22.0 cm, wound with 113 turns of wire carrying a current of 3.29 A. The magnetic field strength was calculated using the formula B = μ0 N I, resulting in B = 4.67 x 10^-4 T. The flux through the coil was calculated using Φ = BA, but the result of 1.43 x 10^-7 Wb was deemed incorrect. The discussion emphasizes the importance of correctly applying the magnetic field formula and suggests verifying calculations against reliable sources. Accurate calculations are crucial for determining the magnetic flux in this scenario.
nb121307
Messages
1
Reaction score
0

Homework Statement


A square, single-turn wire coil L = 1.75 cm on a side is placed inside a solenoid that has a circular cross section of radius r = 2.82 cm.
http://capa8.phy.ohiou.edu/res/ohiou/serwaylib/Graphics/Graph20/serw2014.gif
The solenoid is 22.0 cm long and wound with 113 turns of wire. If the current in the solenoid is 3.29 A, find the flux through the coil.



Homework Equations


Є=(ΔNΔΦ/Δt)
ΔΦ=BAcosΘ
B=μ0NI


The Attempt at a Solution


I have found the strength of the magnetic field using the constant μ0 = 12.57x10^-7, the number of turns 113, and the current 3.29 A, and because time is not applied Δt can be taken out of the equation to get Є=ΔNΔΦ=ΔN(BAcosΘ). This gives me B = 4.6731489x10^-4 or B = 4.67x10^-4 The next part of the question asks for the flux and the strength of the magnetic field is required to do so. However, when applying the strength of the magnetic field and the area of the square coil using the equation Φ = BA the answer I am given is Φ = 1.43x10^-7 Wb which is apparently wrong. I'm not sure what I am doing wrong and any help with this would be greatly appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
Welcome to Physics Forums!

nb121307 said:

Homework Statement


A square, single-turn wire coil L = 1.75 cm on a side is placed inside a solenoid that has a circular cross section of radius r = 2.82 cm.
http://capa8.phy.ohiou.edu/res/ohiou/serwaylib/Graphics/Graph20/serw2014.gif
The solenoid is 22.0 cm long and wound with 113 turns of wire. If the current in the solenoid is 3.29 A, find the flux through the coil.


Homework Equations


Є=(ΔNΔΦ/Δt)
That equation isn't relevant, since they are not asking for Є.

ΔΦ=BAcosΘ
Okay. But strictly speaking, this would be Φ and not ΔΦ. Nothing is changing in this situtation.

B=μ0 N I
If N means the number of turns, then this expression is missing something. Check this out:
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/solenoid.html#c2

The Attempt at a Solution


I have found the strength of the magnetic field using the constant μ0 = 12.57x10^-7, the number of turns 113, and the current 3.29 A, and because time is not applied Δt can be taken out of the equation to get Є=ΔNΔΦ=ΔN(BAcosΘ). This gives me B = 4.6731489x10^-4 or B = 4.67x10^-4 The next part of the question asks for the flux and the strength of the magnetic field is required to do so. However, when applying the strength of the magnetic field and the area of the square coil using the equation Φ = BA the answer I am given is Φ = 1.43x10^-7 Wb which is apparently wrong. I'm not sure what I am doing wrong and any help with this would be greatly appreciated.

Try calculating B using the link I give above, then you can use the flux equation you had to find the flux.
 
Last edited by a moderator:
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top