Naty1 said:
It's a wonderful potential [theoretical] opportunity.
Agreed: it’s a fascinating and impertinent question. Its simplicity is almost embarrassing, and yet it touches on nearly every major cornerstone and controversy in contemporary physics: general relativity, quantum gravity, the Standard Model, vacuum energy, dark energy, the Big Bang and the annihilation catastrophe problem, yes…even ufo’s, and did I mention: “antimatter?” And not only all that, but we get to see the definitive experimental observation within a matter of months probably. I daresay, if you don’t absolutely *live* for historical scientific moments like these, then physics probably isn’t really your bailiwick.
Naty1 said:
Is there any experimental 'data' yet that supports this statement:
Maxwell's Demon said:
As cited above and elsewhere, it's quite possible, given the available data set, that antimatter possesses an "inverse gravitational charge," just as antimatter particles possesses an "inverse electrical charge."
There’s no experimental data either way, which is why I said “quite possible” instead of “true” or “known.” But there are published papers by the theoretical physicists I mentioned previously, and others. The wiki offers additional citations:
http://en.wikipedia.org/wiki/Gravitational_interaction_of_antimatter
The ATHENA consortium attempted the measurement a few years ago, but their findings were inconclusive. However, some of the theorists I mentioned offer the observed repulsive acceleration of the universe as proof of their ideas. They suggest that half of the universe could be antimatter galaxy clusters which are antigravitationally repelling matter galaxy clusters. And they say this could explain dark energy…and perhaps even dark matter:
Quantum vacuum and dark matter, Hajdukovic, 2011
http://arxiv.org/ftp/arxiv/papers/1111/1111.4884.pdf
And I’m loathe to get into it, but I think a good argument can be made that the analogous physics of electromagnetism and gravitomagnetism, which behave by essentially identical mathematical equations in the weak field limit, makes a strong circumstantial case that gravitation also possesses a dipole nature. But I don’t lend much credence to circumstantial arguments.
Naty1 said:
No evidence of antigravity is mentioned.
On the other hand, astronomers can’t seem to shut up about antigravity lately. Because we now know that *something* which acts just like antigravity is pushing the universe apart. Of course we *may* find some other kind of explanation, but frankly, if it looks like a duck, and quacks like a duck…
Naty1 said:
So for now I'll stick with my earlier post:
Naty1 said:
Conventional physics cannot currently offer 'antigravity', as is posted in the replies above.
I’m going to have to split a hair with you on this one, Naty1: conventional physics might not currently offer any accepted mainstream prospects for antigravity (if we’re willing to ignore the theoretical investigations by R. Forward and H. Bondi on negative mass – which I’m not willing to do, because they’re all consistent with “conventional theory”). But nowadays astronomy seems incapable of working without antigravity (ok ok, we can keep calling it “dark energy” for awhile longer). And conventional physics *can* offer intriguing possibilities of antigravity, since it’s not explicitly forbidden by any of the conservation laws. And at this point one could argue that the equivalence principle may need to be revised in this simple way: “the inertial mass of a body is equivalent to the [absolute] magnitude of its gravitational mass,” which would defeat the “but the equivalence principle says that inertial mass = gravitational mass” argument.
Naty1 said:
let's hope somebody finds 'antigravity'...the sooner the better!
Apparently we already have…in the motion of the galaxy clusters. The only part we haven’t resolved is the precise nature of the mechanism (and happily, that’s only a matter of time, and good ole human ingenuity).
The AEGIS group will have the definitive observational results when they perform their experiment soon: they expect to measure the polarity and the magnitude of the gravitational acceleration of antihydrogen to around 1% accuracy. And you’re right; if antimatter falls up then I think it’ll steal headlines all over the world.
cjameshuff said:
If antimatter had opposite gravitational charge, a particle and antiparticle annihilating to form photons (which are modeled as their own antiparticles and observed to react to gravitational fields with the same sign as normal matter) would be a net zero gravitational charge suddenly becoming a positive one.
Or...not. If photons (and neutrinos) have a net gravitational charge of zero, and particles with a net gravitational charge of zero accelerate toward matter and antimatter equally (analogous to electrostatic induction), then there is no logical inconsistency. But this is exactly why I don’t trust theory: every theory is ultimately ad hoc, and only ever as credible as the next observational challenge.
cjameshuff said:
In addition, gravity is a function of mass-energy.
Here, take these two papers and call me in the morning:
CPT symmetry and antimatter gravity in general relativity, M Villata, 2011
http://arxiv.org/pdf/1103.4937.pdf
Time reversal and negative energies in general relativity, JM Ripalda, 1999
http://arxiv.org/ftp/gr-qc/papers/9906/9906012.pdf
cjameshuff said:
Never mind antigravity, you could turn gravity on and off by alternately performing annihilation (capturing the released energy) and pair production. This badly breaks conservation laws (turn gravity off, lift a now-weightless mass, turn it back on, use the falling now-heavy mass to generate power!).
I could make a list of the ways that didn’t make sense. And I could be wrong, but I think you just implied that a water wheel violates conservation of energy. I suggest that you think about the same example (whatever it is) and replace the idea of “gravity field” with “electrical field” and check to see if any conservation laws are broken, badly broken, or very badly broken. I can almost certainly assure you that dipole gravitational charge interactions (which would yield attractive and repulsive accelerations) are every bit as conservative as dipole electrical charge interactions (which also yield attractive and repulsive accelerations). They’re both conservative fields, gravitational repulsion does –not- imply free energy any more than electrical repulsion implies free energy.
cjameshuff said:
It's a quick and easy solution that might be intuitively appealing, but it is almost certainly completely wrong.
I love that: “almost certainly”…followed by…“completely wrong.” It’s not quite certainly, but nearly certainly…not just wrong…but completely wrong. In that case I am almost certainly completely unconvinced that it’s almost certainly completely wrong :)
And maybe I’m shallow, but I think that quick, easy, and intuitively-appealing explanations are rather compelling, not intrinsically suspect.
Honesty, and nothing personal, but if the world-class physics wunderkinds at the Max Planck Institute for Nuclear Physics *and* CERN think that the question of the sign of the antimatter/matter gravitational interaction is unresolved, and worth spending a few years of their lives and millions of dollars on testing, then I’m going to keep an open mind and let their data settle the question.