Can anyone confirm formula (combinations)

uart
Science Advisor
Messages
2,797
Reaction score
21
Hi, I've been scratching around trying to figure out a formula for the following problem and I've got one that I think is correct. Just wondering if anyone can confirm it for certain (like maybe you have it in a textbook or know it well etc). Thanks.

Problem : You need to partition n=k*m distinct objects into k sets each containing m objects. How many ways can you do this?



Proposed Answer :

Number of possible distinct partitionings = n! / ( k! * (m!)^k )

(I think it's correct).
 
Last edited:
Mathematics news on Phys.org
Sounds plausible.
 
Are the sets into which we partition indistinguishable? Ie if we partition n into n sets there are n! ways of doing this if we consider order, or just 1 if we say that they are all equivalent. I'm guessing fromyour formula order doesn't matter.

So there are nCm ways of picking the first set, mutliplied by (n-m)Cm for the second and so on, but we need to divide by k! to forget the ordering which is, I suspect, exactly what your formula is.
 
matt grime said:
Are the sets into which we partition indistinguishable? Ie if we partition n into n sets there are n! ways of doing this if we consider order, or just 1 if we say that they are all equivalent. I'm guessing fromyour formula order doesn't matter.

Your guess is correct Matt, the way I set it up is that order doesn't matter. So in the example of partitioning n items into n sets of one item each then yes there is only one way to do it, not n! ways.

An example of the type of problem that I wanted to solve is : say you have 12 people meet to play 6 games of chess, how many distinct ways can you organize that round of 6 games.

BTW, I can prove for certain that the formula works for the m=2 case (like in the chess example) but I was just a little unsure if it was correct for m>2.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top