Can anyone give an intuitive proof of the theorem on polynomial factorization?

Shahed al mamun
Messages
5
Reaction score
0
Recently I have known an algebraic theorem on polynomial while learning the method of partial fraction.
The theorem is :
Any polynomial can be written as the product of linear factors and irreducible quadratic factors.
I did not find an intuitive proof of this theorem.I asked a question in this link http://math.stackexchange.com/questions/1158560/need-of-an-intuitive-proof-of-an-algebraic theorem

and an answer was given there but I did not fully understand this.Can anyone prove the theorem intuitively?
 
Physics news on Phys.org
The theorem you stated applies to polynomials with real coefficients and the factoring terms all involve real numbers. The fundamental theorem of algebra states that the polynomial can be expressed as a product of linear terms involving the roots (times the lead coefficient). Since the coefficients are all real, complex roots will appears as conjugate pairs. Combining a pair gives an irreducible quadratic term with real constants.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top