Can Calculus Help Us Find Limits Using a Constant and a Calculator?

  • Thread starter Thread starter bonzy87
  • Start date Start date
bonzy87
Messages
5
Reaction score
0
Evaluate lim (1+ a/x)^x
x→+∞
(where a is a constant.)

need help as to how to go about answering this am fairly new to calculus
any help would be appreciated
 
Physics news on Phys.org
You've got a calculator right?

See what happens when a=1, and x=1,10,100,1000, etc. Write down the answer and see if there exists a limit.

You might actually have fun.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top