Ray Vickson said:
Do you really mean to have ##e^{n \lambda}## rather than ##e^{- n \lambda}##? I ask, because if ##p_k(\mu) = \mu^k e^{-\mu}/k!## is the Poisson probability mass function for mean ##\mu## your sum has the form ##e^{2 n \lambda} \sum_{k=1}^c p_k(n \lambda)##. If you had ##e^{-n \lambda}## instead, your sum would be ##\sum_{k=1}^c p_k(n \lambda)##, which is almost the cumulative distribution function; it merely lacks the ##k=0## term.
You're right. It is ##e^{-n\lambda}##.
It's supposed to be the cumulative function. This is part of a larger problem, I didn't post the whole thing because I had some parts worked out. I don't think I can edit the initial post anymore, but I will post the original problem to give some context (which I probably should have done before).
The idea of the problem consists in having ##X_1,\dots, X_n## simple random sample of ##X\sim \operatorname{Poisson}(\lambda)## and the goal is the optimal critical region ##\alpha## for ##H_0:\lambda =\lambda_0## against ##H_1:\lambda=\lambda_1##.
I applied Neyman-Pearson theorem and followed ## \frac{\lambda_0}{\lambda_1} = \frac{(\lambda_0^{\sum x_i} e^{-\lambda_0}) / (\prod_{i=1}^n x_i!)}{(\lambda_1^{\sum x_i}e^{-\lambda_1})/(\prod_{i=1}^n x_i!)} = \frac{\lambda_0^{\sum x_i}e^{\lambda_1}}{\lambda_1^{\sum x_i}e^{\lambda_0}}\leq k##
Taking logarithms
## \ln \left( \lambda_0^{\sum x_i}e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}e^{\lambda_0} \right)\leq \ln(k)\\
\ln \left( \lambda_0^{\sum x_i}\right)+\ln\left(e^{\lambda_1} \right)-\ln \left( \lambda_1^{\sum x_i}\right)-\left(e^{\lambda_0} \right)\leq \ln(k)\\
\left(\sum x_i\right)\ln (\lambda_0)+\lambda_1 -\left( \sum x_i \right)\ln \left( \lambda_1\right)-\lambda_0\leq \ln(k)\\
\left(\sum x_i\right)\left(\ln (\lambda_0) -\ln \left( \lambda_1\right)\right)\leq \ln(k)+(\lambda_0-\lambda_1)\\
\sum x_i\leq \frac{\ln(k)+(\lambda_0-\lambda_1)}{\ln (\lambda_0) -\ln \left( \lambda_1\right)}
##
Because of that I have to find ##c## such that
##P\left( \sum_{i=1}^n X_i \leq c |, \lambda = \lambda_0 \right) \leq \alpha##
and
##P\left( \sum_{i=1}^{c+1} X_i \le c \,\middle|\, \lambda = \lambda_0 \right) \geq \alpha##Which reduced to the pair of equations you see above.