Can Complex Spaces Be Projected onto Closed Real Spaces without Infinity?

  • Thread starter Thread starter thehangedman
  • Start date Start date
  • Tags Tags
    Projection
thehangedman
Messages
68
Reaction score
2
I am looking for good reading material and references on something. I have tried the google route and can't find anything so I thought I would ask the community of people who know...

I want to learn more about the following scenario: Suppose I start with a 1 dimensional complex space. I want to project that onto a 1 dimensional closed (compacted?) real space. Essentially, map the complex plane to the real circle. I am also interested in this mapping in higher dimensions too, so C2 mapping to the real surface of a sphere. Caveat here, though, is that the real spaces should not have projected values of infinity. I would rather the coordinates loop (spherical would work better I'd assume). I was thinking along the line of projecting the complex plane to the unit circle in the plane and using the distance around said circle to create the compacted real space, but would that work in higher dimensions and does that yield any interesting results?

Again I'm not looking for any specific "answer" but rather references of people who have studied this specific scenerio and what they came up with.

Thanks for all your help!
 
Mathematics news on Phys.org
anyone?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top