I Can Conditional Probability Be Solved Generally with PDFs of Variables?

rabbed
Messages
241
Reaction score
3
Is it possible to solve something like this generally or does it depend on the pdf's of the variables?

P(x < f(y) | x > -f(y))
 
Physics news on Phys.org
Your expression can be given as \frac{P(-f(y)&lt;x&lt;f(y))}{P(-f(y)&lt;x&lt;\infty)}.
 
As a step in using the CDF method for a random variable as a function of X where i have X_PDF, I came from:

P(x > -f(y) AND x < f(y)) =
P(x > -f(y)) * P(x < f(y) | x > -f(y))

The aim is to convert the P()'s to X_CDF()'s.

Your answer led me back a step, which made me think that maybe P(x > -f(y) AND x < f(y)) might be expressed like (1-X_CDF(-f(y))) - X_CDF(f(y))

It seems to be correct for my case, so thank you :)
 
By the way..

In the CDF method, I understand that I need to reformulate expressions to get something like P(X < y) which equals X_CDF(y) or P(X > y) which equals (1-X_CDF(y)), since I know the expression of X_PDF(x) = X_CDF'(x).

What if I have P(A + B < y), knowing A_PDF(a) and B_PDF(b)?
Would that require that I know AplusB_PDF(a,b) and some transformation from y to a and y to b?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top