Can Divergent Series Sums Converge?

PFuser1232
Messages
479
Reaction score
20
Consider the two divergent series:
$$\sum_{n=k}^{\infty} a_n$$
$$\sum_{n=k}^{\infty} b_n$$
Is it possible for ##\sum_{n=k}^{\infty} (a_n \pm b_n)## to converge?
 
Physics news on Phys.org
Yes, consider the case ##a_n = b_n##. Then the sum of ##a_n - b_n## is zero.
 
  • Like
Likes PFuser1232
Orodruin said:
Yes, consider the case ##a_n = b_n##. Then the sum of ##a_n - b_n## is zero.

Thanks!
But in that case does it make sense to say that ##\sum_{n=k}^{\infty} (a_n \pm b_n) = \sum_{n=k}^{\infty} a_n \pm \sum_{n=k}^{\infty} b_n##?
 
MohammedRady said:
Thanks!
But in that case does it make sense to say that ##\sum_{n=k}^{\infty} (a_n \pm b_n) = \sum_{n=k}^{\infty} a_n \pm \sum_{n=k}^{\infty} b_n##?
No, it generally make sense only if the series converge.
 
  • Like
Likes PFuser1232
MohammedRady said:
Consider the two divergent series:
$$\sum_{n=k}^{\infty} a_n$$
$$\sum_{n=k}^{\infty} b_n$$
Is it possible for ##\sum_{n=k}^{\infty} (a_n \pm b_n)## to converge?

You really ought to be able to find examples yourself to resolve this question.
 
You can construct others, for example ##a_ {n}=\frac{1}{n^{2}}+b_{n}## so ## \sum_{n=1}^{\infty}a_{n}-b_{n}=\frac{\pi^{2}}{6}##...
 

Similar threads

Back
Top