Can Diverging Function Arguments Predict Function Divergence in Physics?

metroplex021
Messages
148
Reaction score
0
Hi folks -- could anyone think of a justification of the idea that if a function's arguments diverge (i.e. are taken to infinity), there's a high probability that the function too will diverge?

This would be really helpful for thinking about fundamental theories in particle physics, so any help much appreciated!
 
Mathematics news on Phys.org
Not about "high probability", but if your function is nice enough, complex analysis could be of use. Liouville's theorem at least tells you that non-constant differentiable functions \mathbb C \to \mathbb C are unbounded. I'd guess there's some related machinery that would help more.
 
metroplex021 said:
Hi folks -- could anyone think of a justification of the idea that if a function's arguments diverge (i.e. are taken to infinity), there's a high probability that the function too will diverge?

This would be really helpful for thinking about fundamental theories in particle physics, so any help much appreciated!
That statement will make sense if you have some way of "measuring" sets of functions so that you can talk about "probability" in relation to sets of functions.
 
economicsnerd said:
Not about "high probability", but if your function is nice enough, complex analysis could be of use. Liouville's theorem at least tells you that non-constant differentiable functions \mathbb C \to \mathbb C are unbounded. I'd guess there's some related machinery that would help more.
Unbounded, but they don't have to go to infinity. sin(z) for z on the real axis is an example of a function that stays bounded for an argument that goes to infinity.


I agree with HallsofIvy, without some way to define a probability this does not work.
This would be really helpful for thinking about fundamental theories in particle physics
Why?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top