Can Hermitian Operators Commute if Their Commutator is Also Hermitian?

bmb2009
Messages
89
Reaction score
0

Homework Statement


[A,B] = C and operators A,B,C are all hermitian show that C=0


Homework Equations





The Attempt at a Solution



Since it is given that all operators are hermitian I know that A=A' B=B' and C=C' so i expanded it out to
AB-BA=C
A'B'-B'A'=C
(BA)' - (AB)'=C


I'm not real sure where I am supposed to go or what properties of hermitian operators I am supposed to used to show that AB=BA..any help would be appreciated thank
 
Physics news on Phys.org
Going back to AB-BA=C, what is C' equal to? How does it compare to what you derived so far?
 
vela said:
Going back to AB-BA=C, what is C' equal to? How does it compare to what you derived so far?

So would I just treat C and C' as separate equations, equate them and show that it equals zero?

ie:

C'=AB-BA
C=(BA)'-(AB)' and just use the fact that all the operators are hermitian?
 
Not exactly. You have C=AB-BA, so C' = (AB-BA)'. With a little algebra, you should be able to show that C' = -C.
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top