Can I find a general solution to this circuit?

AI Thread Summary
The discussion centers on finding the equivalent resistance of a circuit with varying numbers of R3 resistors. It is suggested that there may not be a general solution due to the complexity of the calculations involved. However, one participant proposes analyzing the circuit by removing certain resistors to simplify the problem. They establish a relationship between the resistance functions R(n) and R(n+1), leading to an approximation for large n. Ultimately, this approach allows for easier calculations similar to those used in infinite ladder circuits.
Lotto
Messages
251
Reaction score
16
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
circuit2.jpg

I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
 
Physics news on Phys.org
Google "ladder circuit". You will find methods for dealing with problems like this.
 
Lotto said:
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
View attachment 326155
I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
 
haruspex said:
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
Yes, I did it and I made an approximation when ##n## is big, so we can say that ##R_n \approx R_{n-1}##, similary as when we solve an infinite ladder circuit. Then it was easy to solve.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top