Can I find a general solution to this circuit?

AI Thread Summary
The discussion centers on finding the equivalent resistance of a circuit with varying numbers of R3 resistors. It is suggested that there may not be a general solution due to the complexity of the calculations involved. However, one participant proposes analyzing the circuit by removing certain resistors to simplify the problem. They establish a relationship between the resistance functions R(n) and R(n+1), leading to an approximation for large n. Ultimately, this approach allows for easier calculations similar to those used in infinite ladder circuits.
Lotto
Messages
251
Reaction score
16
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
circuit2.jpg

I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
 
Physics news on Phys.org
Google "ladder circuit". You will find methods for dealing with problems like this.
 
Lotto said:
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
View attachment 326155
I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
 
haruspex said:
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
Yes, I did it and I made an approximation when ##n## is big, so we can say that ##R_n \approx R_{n-1}##, similary as when we solve an infinite ladder circuit. Then it was easy to solve.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top