Can I find a general solution to this circuit?

Click For Summary
The discussion centers on finding the equivalent resistance of a circuit with varying numbers of R3 resistors. It is suggested that there may not be a general solution due to the complexity of the calculations involved. However, one participant proposes analyzing the circuit by removing certain resistors to simplify the problem. They establish a relationship between the resistance functions R(n) and R(n+1), leading to an approximation for large n. Ultimately, this approach allows for easier calculations similar to those used in infinite ladder circuits.
Lotto
Messages
253
Reaction score
16
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
circuit2.jpg

I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
 
Physics news on Phys.org
Google "ladder circuit". You will find methods for dealing with problems like this.
 
Lotto said:
TL;DR Summary: I have to find an equivalent resistance of the circuit below, dependent on the amount of ##R_3## - resistors.

Here is the circuit:
View attachment 326155
I think there is no general solution. When I want to calculate it, I have to do ##((((R_1+2R_2)^{-1}+{R_3}^{-1})^{-1}+2R_2)^{-1}+{R_3}^{-1})^{-1}...##, so it is kind of crazy. Is there any general solution dependent on the amount of ##R_3## - resistors ##n##? So something like ##R_{\mathrm {eq} _n}=....##.
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
 
haruspex said:
My first step would be to leave out the two R1s. Those can be put back in later.
The resistance of the remaining system is a function R(n). Can you figure out the relationship between R(n) and R(n+1)?
Yes, I did it and I made an approximation when ##n## is big, so we can say that ##R_n \approx R_{n-1}##, similary as when we solve an infinite ladder circuit. Then it was easy to solve.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
10
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
668
Replies
5
Views
2K
Replies
2
Views
2K