Can Particles in Extreme Conditions Exhibit Quantum Degeneracy?

Anabelle37
Messages
35
Reaction score
0

Homework Statement



By estimating the De Broglie wavelength and the inter-particle spacing, find whether the following systems of particles are degenerate:
(i) a gas of neutrons in a neutron star with mass density 10^17 kg/m^3 at the temperature of 10^8K
(ii)a gas of oxygen molecules at pressure 10atm(=10^6 pascals) at room temperature

Homework Equations



De Broglie wavelength, l= h/(sqrt(2*pi*m*k*T))
inter-particle spacing: (4/3)*pi*d^3=1/n
h = 6.626x10^-34 Js
k= 1.38x10^-23 J/K

The Attempt at a Solution



for degeneracy d< l

De Broglie wavelength, l= 6.626x10^-34 /(sqrt(2*pi*10^17 *1.38x10^-23*10^8))
= 2.25x10^-35?

Is m in the DeBroglie equation meant to be mass? so if I have mass density how do I found the mass if idon't know the volume of the gas??

Also for the inter-particle spacing what is the number density(n) for each example??

Thanks
 
Physics news on Phys.org


The "m" in the de Broglie wavelength formula is the mass of one gas particle. In this case the mass of one neutron.

"n" is the number density i.e. the number of particles in unit volume. This can be expressed with the mass of a neutron and the given mass density of the neutron gas as follows:

consider V to be the volume of the gas, and N to be the total number of particles in the gas. Then: n=N/V
Now if rho is the mass density then the volume of the gas is: V=(m*N)/rho since m is the mass of a single particle, and so m*N is the total mass of the gas. Now write this in the formula for the number density, and you will see that N will cancel, only the m mass of a single neutron and the rho mass density will stay back, which are known.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top