MHB Can Plugging in (x/2) or (x - 1/2) Determine Real Zeros in a Quadratic Equation?

  • Thread starter Thread starter mathland
  • Start date Start date
  • Tags Tags
    Quadratic
AI Thread Summary
Plugging in (x/2) or (x - 1/2) into the function f(x) = x - x^2 can help analyze the real zeros of the quadratic equation. The function y = x - x^2 - 1/2 does not intersect the x-axis, indicating that it has no real zeros. The concavity of f(x) suggests that lowering the graph will not change its ability to cross the x-axis. Evaluating the discriminant, D = b^2 - 4ac, for each quadratic form reveals insights into the nature of the zeros. Understanding these shifts and their effects on the graph is crucial for determining the presence of real zeros.
mathland
Messages
33
Reaction score
0
I can replace f(x) with x - x^2. Should I plug (x/2) into f(x)? How about (x - 1/2) into f(x)? I need the set up.

FB_IMG_1612321220546.jpg
 
Mathematics news on Phys.org
Note the range of $f(x)$. A and B are vertical shifts, C and D are horizontal shifts. Which one of the given shifts would result in the graph of $f(x)$ not crossing the $x-\text{axis}$?
 
Greg said:
Note the range of $f(x)$. A and B are vertical shifts, C and D are horizontal shifts. Which one of the given shifts would result in the graph of $f(x)$ not crossing the $x-\text{axis}$?

Let y = the function.

y = x - x^2 - 1/2 does not cross the line y = 0.
 
Note the concavity of $f(x)$. What does that tell you about lowering the graph of $f(x)$? (the line $y=0$ does not concern us presently).
 
write each quadratic in standard form, $ax^2+bx+c$ ... check each discriminant, $D = b^2-4ac$

you know what the discriminant can tell you about the nature of zeros, right?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top