Can Quantum Decoherence Math Explain Color Charge States of Quarks?

Zachary Nichols
Messages
15
Reaction score
0
I read up on quantum decoherence however the math was not explained clearly can someone explain it to me
 
Physics news on Phys.org
What don't you understand about the mathematics, exactly? If you ask a more precise question, people will find it easier to help you!
 
OK sorry about that what i mean is that i couldn't find much on the math portion of decoherence only bits that made no sense. what I'm asking is that can someone please explain to me the math behind decoherence (all of it)
 
The wikipedia page http://en.wikipedia.org/wiki/Quantum_decoherence#Density_matrix_approach goes through the math. However, any mathematical treatment of decoherence comes with a pretty stiff cost of entry: you have to know a fair amount of linear algebra, be comfortable with Dirac's bra-ket notation, and have a solid understanding of basic quantum mechanics.

An alternative, written for someone who hasn't yet learned this background stuff, is https://www.amazon.com/dp/0465067867/?tag=pfamazon01-20
 
There are also many different ways to handle decoherence, some will only require the "usual" math in QM (e.g. using a Lindbladian) but there are other approaches which use for example stochastic differential equations which you are less likely to have come across before.
 
ok thank you this helps. However I want to ask one more thing I'm trying to explain color charge states of quarks with this math do you have any suggestions in a way to do it. or at least push me in the right direction.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top