Can Quantum Mechanics Ket and Bra Methods Solve Scalar Equations?

  • Thread starter Thread starter Ugnius
  • Start date Start date
  • Tags Tags
    Quantum mechanics
Ugnius
Messages
54
Reaction score
10
Homework Statement
##\left|m\right\rangle = \frac{1}{\sqrt{A}}\binom{1-2i}{\alpha} , \left|n\right\rangle = \frac{1}{\sqrt{14}}\binom{-3+2i}{\beta}##
Relevant Equations
Find unknown constants A, α and β, we know that β is real positive integer , α has both real and imaginary parts
Not really even sure how to approach this problem , I would guess if we need scalar answer we would need to combine these two given equations together but I'm unfamiliar with such methods, in the book there is methods to make a ket to a bra and then matrix part transposes and multiplies with the original while constant squares like:
##\left\langle m \right|\left|m\right\rangle = ({\frac{1}{\sqrt{A}}}^2)*\binom{1-2i}{\alpha}*(1-2i ,\alpha)##

Would that be an approach?
 
Physics news on Phys.org
Ugnius said:
Homework Statement: ##\left|m\right\rangle = \frac{1}{\sqrt{A}}\binom{1-2i}{\alpha} , \left|n\right\rangle = \frac{1}{\sqrt{14}}\binom{-3+2i}{\beta}##
Relevant Equations: Find unknown constants A, α and β, we know that β is real positive integer , α has both real and imaginary parts

Not really even sure how to approach this problem , I would guess if we need scalar answer we would need to combine these two given equations together but I'm unfamiliar with such methods, in the book there is methods to make a ket to a bra and then matrix part transposes and multiplies with the original while constant squares like:
##\left\langle m \right|\left|m\right\rangle = ({\frac{1}{\sqrt{A}}}^2)*\binom{1-2i}{\alpha}*(1-2i ,\alpha)##

Would that be an approach?
If you normalize ##\mid n \rangle##, then yes, you can find ##\beta##. But you would write this as
##\langle n \mid n \rangle = \dfrac{1}{\sqrt{14}} \begin{pmatrix} -3-2i & \beta^* \end{pmatrix} \dfrac{1}{\sqrt{14}} \begin{pmatrix} -3+2i \\ \beta \end{pmatrix}##
(You wrote your bra and ket in the wrong order for ##\langle m \mid m \rangle## in your OP.)

We know that ##\beta## is real, so ##\beta^* = \beta##, and you can go from there.

To find A and ##\alpha## we need to know something about how ##\mid m \rangle## and ##\mid n \rangle## relate to each other. Are they orthogonal? ie. ##\langle n \mid m \rangle = 0##?

-Dan
 
Thank you.
They are orthogonal yes , I'm brute forcing the solution right now , I solved for \beta. Now I need to solve \langle n \mid m \rangle = 0 and i'll get back to you for confirmation if I did it correctly
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top