MHB Can Rank of A Determine Rank of A+A²+A³+A⁴?

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Matrix rank
Suvadip
Messages
68
Reaction score
0
If rank of A is 2. Is it possible to find the rank of A+A2+A3+A4

from that information? Please help
 
Physics news on Phys.org
suvadip said:
If rank of A is 2. Is it possible to find the rank of A+A2+A3+A4

from that information? Please help

It can't be determined, denoting $B=A+A^2+A^3+A^4$: $$\left \{ \begin{matrix}A=I\Rightarrow B=4I\Rightarrow\mbox{rank } B=2\\A=\begin{bmatrix}{1}&{\;0}\\{0}&{-1}\end{bmatrix}\Rightarrow B=\begin{bmatrix}{4}&{0}\\{0}&{0}\end{bmatrix} \Rightarrow\mbox{rank } B=1\\A=\begin{bmatrix}{-1}&{\;\;0}\\{\;\;0}&{-1}\end{bmatrix}\Rightarrow B=0\Rightarrow\mbox{rank } B=0\end{matrix}\right. $$
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top