MHB Can someone give a simple explanation of quadratic residues?

Terry1
Messages
4
Reaction score
0
Hi,

This is not coursework, just private study.

Ok, I understand that q is a quadratic residue MOD n if x^2 = q MOD n

What I don't understand is how to figure this out?

I read a paper that states "8 is a quadratic residue mod 17, since 5^2 = 8 MOD 17", fair enough.
It then goes on to state that "8 is a quadratic nonresidue mod 11, because x^2 = 8 MOD 11 has no solutions"

How do we know there are no solutions?

Thanks
 
Mathematics news on Phys.org
Terry said:
Hi,

This is not coursework, just private study.

Ok, I understand that q is a quadratic residue MOD n if x^2 = q MOD n

What I don't understand is how to figure this out?

I read a paper that states "8 is a quadratic residue mod 17, since 5^2 = 8 MOD 17", fair enough.
It then goes on to state that "8 is a quadratic nonresidue mod 11, because x^2 = 8 MOD 11 has no solutions"

How do we know there are no solutions?

Thanks

To find if a number is quadratic residue mod x we need to take the numbers k from 0 to x-1 and find

$k^2\,mod\,$ and this shall be a quadratic residue
but because of symmetry as $n^2= (-n)^2$ we need to take k from 0 to $\lfloor\dfrac{x-1}{2}\rfloor$

the numbers we find in above from 0 to n-1 (0 and 1 are always there) are quadratic residue and that are not there are quadratic non residue

for example $0^2 = 0\,mod \, 3$
$1^2 = 1\,mod \, 3$
$2^2 = 1\,mod \, 3$ ( same are 1)
so 0 and 1 are quadratic residue mod 3 but 2 is not quadratic residue
 
Last edited:
Thanks kaliprasad.

Let's see if I have understood correctly...

From what you explained would I be right in saying {0, 1, 3, 4, 9, 10, 12} are quadratic residues MOD 13
and {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} are quadratic residues MOD 23?

Many thanks,

Terry
 
Terry said:
Thanks kaliprasad.

Let's see if I have understood correctly...

From what you explained would I be right in saying {0, 1, 3, 4, 9, 10, 12} are quadratic residues MOD 13
and {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} are quadratic residues MOD 23?

Many thanks,

Terry

right
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top