MHB Can someone help me find the derivative of y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$?

Click For Summary
The discussion revolves around finding the derivative of the function y=√(x+√(x+√x)). The original poster believes their derivative calculation is correct but receives feedback indicating a misplaced parenthesis in their expression. Another participant suggests using implicit differentiation for clarity and provides a detailed step-by-step solution. The final derivative expression combines results from both approaches, confirming that the correct answer can be derived through either method. The conversation emphasizes the importance of careful notation and the utility of different differentiation techniques.
lastochka
Messages
29
Reaction score
0
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!
 
Physics news on Phys.org
Is this your answer?

View attachment 4049

If no, then we can work towards getting that answer. :D
 

Attachments

  • differentiation.PNG
    differentiation.PNG
    1.7 KB · Views: 106
Yes, this is what I have so far...
I am not sure how to do it your way.
Is what I did completely wrong??
 
lastochka said:
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!

Hi lastochka,

You seem to have a parenthesis in the wrong place.
It should be:
y$^{\prime}$=$\frac{1}{2}$(x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
 
$$\d{}{x}\sqrt{x+\sqrt{x+\sqrt{x}}}$$

Let $g(x)=\sqrt{x+\sqrt{x}}$ (for ease of reading)

Now, we have:
$$\d{}{x}\sqrt{x+g(x)}$$
$$=\frac{1}{2\sqrt{x+g(x)}}\cdot (1+g'(x))$$Evaluate $g'(x)$
$$g'(x)=\frac{1}{2\sqrt{x+\sqrt{x}}}\cdot (1+\frac{1}{2\sqrt{x}})=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}$$

Combining the answers:

$$\d{}{x}\sqrt{x+g(x)}=\frac{ (1+g'(x))}{2\sqrt{x+g(x)}}=\frac{ 1+\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}$$
 
lastochka said:
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!

Implicit differentiation may be easiest to use in this case:

$\displaystyle \begin{align*} y &= \sqrt{ x + \sqrt{ x + \sqrt{ x } } } \\ y^2 &= x + \sqrt{ x + \sqrt{x}} \\ y^2 - x &= \sqrt{ x + \sqrt{x}} \\ \left( y^2 - x \right) ^2 &= x + \sqrt{x} \\ y^4 - 2x\,y^2 + x^2 &= x + \sqrt{x} \\ \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^4 - 2x\,y^2 + x^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + \sqrt{x} \right) \\ 4y^3\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2 \left( y^2 + 2x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) + 2x &= 1 + \frac{1}{2\,\sqrt{x}} \\ 4y^3\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2y^2 - 4x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2x &= 1 + \frac{1}{2\,\sqrt{x}} \\ 4y \, \left( y^2 - x \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 + \frac{1}{2\,\sqrt{x}} - 2x + 2y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1 + \frac{1}{2\,\sqrt{x}} - 2x +2y^2}{4y\,\left( y^2 - x \right) } \end{align*}$

and when you substitute y in and simplify you should get the same as the answer given.
 
Thank you, everyone for your help!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K