Can someone help me find the derivative of y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$?

Click For Summary
SUMMARY

The discussion focuses on finding the derivative of the function y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$. The initial attempt at differentiation was incorrect due to misplaced parentheses. A corrected approach using implicit differentiation was suggested, leading to the final derivative expression: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \frac{1}{2\sqrt{x}} - 2x + 2y^2}{4y(y^2 - x)}$. This method simplifies the differentiation process and provides a clear path to the correct answer.

PREREQUISITES
  • Understanding of implicit differentiation
  • Familiarity with the chain rule in calculus
  • Knowledge of square root functions and their derivatives
  • Ability to manipulate algebraic expressions involving derivatives
NEXT STEPS
  • Study implicit differentiation techniques in calculus
  • Learn about the chain rule and its applications in differentiation
  • Practice differentiating nested functions and square roots
  • Explore algebraic manipulation of derivative expressions for simplification
USEFUL FOR

Students studying calculus, particularly those working on derivatives of complex functions, as well as educators looking for examples of implicit differentiation techniques.

lastochka
Messages
29
Reaction score
0
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!
 
Physics news on Phys.org
Is this your answer?

View attachment 4049

If no, then we can work towards getting that answer. :D
 

Attachments

  • differentiation.PNG
    differentiation.PNG
    1.7 KB · Views: 118
Yes, this is what I have so far...
I am not sure how to do it your way.
Is what I did completely wrong??
 
lastochka said:
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!

Hi lastochka,

You seem to have a parenthesis in the wrong place.
It should be:
y$^{\prime}$=$\frac{1}{2}$(x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
 
$$\d{}{x}\sqrt{x+\sqrt{x+\sqrt{x}}}$$

Let $g(x)=\sqrt{x+\sqrt{x}}$ (for ease of reading)

Now, we have:
$$\d{}{x}\sqrt{x+g(x)}$$
$$=\frac{1}{2\sqrt{x+g(x)}}\cdot (1+g'(x))$$Evaluate $g'(x)$
$$g'(x)=\frac{1}{2\sqrt{x+\sqrt{x}}}\cdot (1+\frac{1}{2\sqrt{x}})=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}$$

Combining the answers:

$$\d{}{x}\sqrt{x+g(x)}=\frac{ (1+g'(x))}{2\sqrt{x+g(x)}}=\frac{ 1+\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}}{2\sqrt{x+\sqrt{x+\sqrt{x}}}}$$
 
lastochka said:
Hi, this is my online homework exercise. I think I did it right, but the system gives me wrong answer...
Can someone please check what I did
y=$\sqrt{x+\sqrt{x+\sqrt{x}}}$

y$^{\prime}$=$\frac{1}{2}$((x+(x+${x}^{\frac{1}{2}}$)$^{\frac{1}{2}}$)$^\frac{-1}{2}$(1+$\frac{1}{2}$(x+${x}^{\frac{1}{2}}$))$^\frac{-1}{2}$(1+$\frac{1}{2}$x$^\frac{-1}{2}$))
Thank you in advance!

Implicit differentiation may be easiest to use in this case:

$\displaystyle \begin{align*} y &= \sqrt{ x + \sqrt{ x + \sqrt{ x } } } \\ y^2 &= x + \sqrt{ x + \sqrt{x}} \\ y^2 - x &= \sqrt{ x + \sqrt{x}} \\ \left( y^2 - x \right) ^2 &= x + \sqrt{x} \\ y^4 - 2x\,y^2 + x^2 &= x + \sqrt{x} \\ \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^4 - 2x\,y^2 + x^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + \sqrt{x} \right) \\ 4y^3\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2 \left( y^2 + 2x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) + 2x &= 1 + \frac{1}{2\,\sqrt{x}} \\ 4y^3\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2y^2 - 4x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2x &= 1 + \frac{1}{2\,\sqrt{x}} \\ 4y \, \left( y^2 - x \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 + \frac{1}{2\,\sqrt{x}} - 2x + 2y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1 + \frac{1}{2\,\sqrt{x}} - 2x +2y^2}{4y\,\left( y^2 - x \right) } \end{align*}$

and when you substitute y in and simplify you should get the same as the answer given.
 
Thank you, everyone for your help!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K