Can someone help me understand and evaluate the Riemann zeta function?

epkid08
Messages
264
Reaction score
1
I still don't understand a few things.


Let's say we had a non-trivial zero counting function, Z_n(n), for the riemann zeta function. Couldn't we fairly easily prove the riemann hypothesis by evaluating \zeta (\sigma+iZ_n), solving for \sigma, then proving it for all n using induction?


On another note, I still need help in evaluating the actual function. Can someone show me, step by step, how to evaluate say, \zeta (1/2 + 5i)? Please be specific
 
Physics news on Phys.org
You can use (21) or (25) on http://mathworld.wolfram.com/RiemannZetaFunction.html in the evaluations, though you'll have to resort to numerical methods sooner or later.

Of the attempt at proving the Riemann hypothesis, I can only say that the approach you suggest is similar to reducing the problem to Merten's conjecture (by a Mobius reciprocation)- a proof of which would imply the Riemann hypothesis! However, Merten's conjecture has been shown false (though its falsity does not imply the falsity of the Riemann hypothesis).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top