Can Sound Waves Create Customized Noise Patterns in a Room?

AI Thread Summary
Using Fourier expansions, any function can be approximated by sine and cosine waves, raising the question of whether sound can be manipulated to create distinct noise patterns in a room. While theoretically feasible, practical implementation is challenging, particularly over large areas due to sound diffusion. The concept of using multiple speakers to create quiet zones relies on precise control of sound waves, which may require a significant number of speakers. Additionally, real-world limitations mean that achieving perfect sound cancellation or specific waveforms, like square waves, is not possible. Overall, while creating customized noise patterns is an intriguing idea, practical constraints make it difficult to achieve effectively.
edenstar
Messages
11
Reaction score
0
I learned that with Fourier expansions any function can be approximated by an infinite sum of sine and cosine waves. Is it possible to use this fact to create an arbitrary distribution of sound and silence in a given room. Using a simple example, is it possible to make it so there is noise in one half of a room and silence in the other by placing speakers in the right location playing the right frequencies as prescribed by the correct Fourier expansion. I am not only interested in whether this is theoretically possible but also whether this would be possible practically, or maybe the sound diffuses too much for this to work well.
Thanks!
 
Physics news on Phys.org
It's possible to cancel out sound or noise in small areas (google noise cancelling headphones) but it's very hard to do the same over large areas. I suppose under certain controlled conditions it might be possible to track a persons movements around a room and make it appear less noisy where ever the person happens to be - so to him it might appear as if one half of the room is quieter than the other. But for anyone else in the room the so called quiet area might even sound louder.
 
edenstar said:
<snip>, is it possible to make it so there is noise in one half of a room and silence in the other by placing speakers in the right location playing the right frequencies as prescribed by the correct Fourier expansion.<snip>

This type of problem is called an 'inverse problem': you have the far-field distribution and want to back-calculate the source properties. Short answer- within reason you can do this, but it may require a *large* number of independently controlled speakers. Inverse problems are usually ill-conditioned.
 
Keep in mind the conditions which you stated, including "an infinite sum of sine and cosine waves" (and by the way, cosine waves are not necessary ... sine waves will do it). Do you think with real equipment you can create an infinite number of waves?

The fact that you cannot is, for example, the reason why "square waves" are never actually square. You can make them better and better approximations the better your equipment is but there isn't any equipment good enough to make waves that are literally square with mathematically sharp transitions.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top