Can Symmetries on the Riemann Sphere Deepen Our Understanding of Geometry?

  • Thread starter Thread starter mnb96
  • Start date Start date
  • Tags Tags
    Sphere Symmetries
mnb96
Messages
711
Reaction score
5
Hello,

in the usual 2d Euclidean plane we know we have a limited number of symmetry groups that describe certain kinds of symmetries.
Could we add richness to our "vocabulary of symmetries" by considering symmetries on the Riemann sphere, and then stereographically project onto the plane?
 
Physics news on Phys.org
If my memory is not betraying me, mo:bius transformations are an isometry group for the Riemann sphere. We can add inversion to the planar isometry group after a fashion.
 
thanks!

so if I understood correctly, the isometries in the plane are essentially given by rotations of the Riemann sphere along the north-pole/south-pole axis. Instead, the extra richness comes from using symmetries of the Riemann sphere obtained by rotations along different axes. The latter produce conformal transformation rather than isometries in the plane, and are essentially Möbius transformations.

Am I right?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top