yuiop said:
In the original thread I was trying to talk about real world examples, but the thread was derailed because the forum members insisted that I show that is it possible to have rotation in a gravitational field, before they would continue the discussion.
I'm not sure which of the several threads on this topic you're referring to--probably this one?
https://www.physicsforums.com/showthread.php?t=705313
In any case, I'm not sure you've correctly characterized the issue that has kept this topic going on. Nobody disputes that it is "possible to have rotation in a gravitational field". But we would like to understand *how* GR, as a theory, models that kind of scenario. Saying that it "ought" to work out a certain way, based on your intuition, is *not* the same as showing that it *does* in fact work out that way. (See my comment later in this post in response to your statement about the Schwarzschild metric.)
Basically, we have an apparent conflict between theory and common experience:
(1) Common experience says that you can rotate an object about a vertical axis in a gravitational field without having it torn apart by stresses. That implies that you can subject an object to both rotation and linear acceleration along its rotation axis and have the resulting motion be stationary--i.e., its state remains more or less the same over time; whatever variations there are are periodic and don't build up.
(2) Theory (in the form of the Herglotz-Noether theorem) says that a motion that combines rotation and linear acceleration along the rotation axis can't be a Born rigid motion. Of course there are possible stationary states, in the above sense, that are not perfect Born rigid motions; a real motion will have some variation around the ideal of Born rigidity. However, a stationary motion should average to a Born rigid motion (see below for more on why this is), and the theory appears to be saying that there is no such motion possible for a real stationary motion to average to.
Your response to the above has basically been to say that your intuition says #1 is right. But I don't think anyone is arguing about what intuition says. The problem is that we don't know how to make the theory give the answer that intuition says is the right one, even though this is a scenario that should be well within GR's domain of validity. What theoretical inputs we have so far suggest that the intuitive answer is the wrong one, but as PAllen remarked, it doesn't look like there is much help in the literature on this specific question, so we're basically on our own.
yuiop said:
Nevertheless, I find the Born rigidity discussions interesting. It would be useful to know the scale of the problem. Is the induced stress a function of angular velocity or radius?
The closest thing we've seen so far to an answer to this type of question is the Lhosa et al. paper that PAllen linked to in some recent thread or other, which said that the "strain rate" (which is, roughly speaking, the rate at which strain builds up in an object due to failure of Born rigidity) is proportional to the square of the angular velocity. I did a very rough back of the envelope calculation that seemed to show that, for a 1 meter disk rotating at 1 radian per second, the strain would exceed the breaking strength of the strongest material we know in about 4 months. But I'm not sure I understand the math in that paper well enough to know if my calculation was valid.
yuiop said:
You can't. Failure of Born rigidity (more precisely, failure of "approximate Born rigidity"--failure of the motion to average, over the long term, to a Born rigid motion) means that eventually the object is torn apart; there's no way around it. (More precisely, there's no way around it without at some point changing the object's motion to one that does average to a Born rigid motion. For example, you can spin up a disc while constraining it to stay at the same radius and within the same plane, as long as you stop spinning it up, and let it stay at a constant angular velocity, before the stresses in the disc have built up to the breaking point.)
For an example of this, consider the Bell Spaceship Paradox. Two spaceships start out mutually at rest in an inertial frame, with their clocks synchronized; then, at time t = 0 in that frame, they both turn on their rockets and accelerate in the same direction with the same proper acceleration. A string hangs between the ships, attached to each ship at one end, and initially slack. What happens to it?
The answer is that the string stretches and eventually breaks; and the fundamental reason *why* it stretches and eventually breaks is that its motion fails to be Born rigid; the congruence of worldlines that the individual small pieces of the string must follow for it to remain attached at both ends has nonzero expansion. The only way to stop the stretching and breaking from happening is to change the string's motion, for example by detaching one end of it from one of the ships, so that it now *is* Born rigid (at least on average). In other words, there is *no* possible motion of the string that both keeps it attached to both ships *and* prevents it from breaking.
In the case we're talking about here, the problem is nonzero shear, not nonzero expansion; but the basic consequence is the same: something builds up over time until it exceeds the strength of the material. See below.
yuiop said:
Can we usefully discuss the gravitational effects on a 1 metre disc rotating at 1 rpm, without introducing significant errors due to ignoring Born rigidity failure?
Intuitively, of course we should be able to. But no one here has figured out how to model this mathematically in a way that doesn't make predictions similar to my #2 above.
yuiop said:
The obvious solution is to speed up the lower disc so that its rotation rate matches the rotation rate of the upper disc, as measured by the observer on the top disc. When synchronised like this, the two discs could be locked together by balsa wood rods without breaking the rods.
Could it? Remember that in order to spin up the lower disc in a Born rigid manner, its radius must decrease *and* it must bend out of plane. Both of these things will bend the rods. Basically, the rods have to transmit force to the lower disc to speed it up, and that causes stress in the rods.
Also, I don't think the spin-up of the lower disc will be a one-time thing: I think the lower disc will have to continually speed up its rotation in order to keep up with the upper disc. If that's true, then there will be a strain induced *somewhere* in the assembly that will continually increase until it exceeds the breaking strength of the material. This is what PAllen meant by saying that "the shear increases without bound".
Of course, I haven't mathematically modeled this scenario to show how the stresses would build up; as I've said, no one here has figured out how to do that. But as I understand the H-N theorem math from the papers that have been linked to in these threads, it says that the congruence of worldlines that describes two discs with the constraint you have given--that both discs have the same rotation rate as seen by an observer comoving with the center of the top disc--has nonzero shear. And just as in the Bell Spaceship Paradox scenario, this nonzero shear--i.e., the failure of the motion to be Born rigid--will eventually cause the object to be torn apart.
yuiop said:
To show failure in this scenario, it is necessary to demonstrate that that a single infinitesimal thickness disc cannot maintain constant angular velocity when held at constant altitude in a gravitational field. The Schwarzschild metric shows no evidence of that.
Really? You can model this scenario mathematically using the Schwarzschild metric? Please show your work.
Actually, what I'm pretty sure you mean here is that your intuition says that, *if* a mathematical model were constructed using the Schwarzschild metric, it would show what you say. But again, nobody is arguing with what intuition says. We are trying to figure out how the theory actually models this stuff, not how we intuitively guess it should model this stuff.
So unless you can back up your claim about the Schwarzschild metric with actual math, I think you should not be making it. That's not forcing you to "show that it's possible"; that's asking you to not say things about the math if you can't actually show the math.
yuiop said:
Basically we seem to be in a 'aerodynamics predicts bumblebees can't fly and don't care that they actually do', situation.
Aerodynamics only predicted that bumblebees could not fly when it was using the wrong model. The right model (that bumblebees don't fly the way birds and airplanes do; they fly the way helicopters and hummingbirds do, by brute force) predicts that bumblebees can fly just fine.
The problem is that no one here has been able to come up with the counterpart of the "right" model in this case. We (meaning we here in these threads) understand what intuition and common experience tell us; but we don't at this point understand *how* to reconcile that with what the theory seems to be telling us.