Can the Cross Product be Generalized Using the Dot Product?

Damidami
Messages
93
Reaction score
0
I know the cross product and dot product of euclidean space R^3.

But I wanted to know if there is a way of thinking the cross product "in terms of" the dot product.
That is because the dot product can be generalized to an inner product, and from R^3 to an arbitrary inner vector space (and Hilbert space). In that process of generalization, where does the cross product fit?

(1) I mean, is there a way (at least in R^3) of calculating a cross product using only the dot product?

(2) Moreover, I want to know, the definition of euclidean space R^n, is the vector space along with the usual inner product (dot product), or with any other inner product also is considered an eucliden space?

Thanks!
 
Mathematics news on Phys.org
in Rn, one can generalize the cross product to be the unique vector z in Rn such that for all w:

\langle w,z\rangle = \det\begin{pmatrix}v_1\\ \vdots\\v_{n-1}\\w\end{pmatrix}

note that this means we need n-1 "multiplicands" to define a cross product.

normally, we think of a product as a binary operation, so n-1 = 2 means that a "two-term" cross product can only be defined in R3.

in 3 dimensions the above formula becomes:

\bf{a}\cdot(\bf{b}\times\bf{c}) = \det\begin{pmatrix}\bf{a}\\ \bf{b}\\ \bf{c}\end{pmatrix}
 
Hi Deveno,
Thanks, but that doesn't answer any of my questions.
Can (even in R^3) the cross product be defined using the inner product only?
What makes me unconfortable is that the dot product can be generalized to inner product spaces and hilbert spaces, while the cross product doesn't generalize to any kind of space?
 
How can you relate the cross product and the dot product? One gives a vector and the other gives a scalar...
 
You can't generalize the cross product. Ask yourself this simple question: which dimension is perpendicular to all x, y and z planes?

If you say which dimension is perpendicular to x and y planes, the answer is the z plane but there is no such analog for higher dimensions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top