Can the Inequality x^x + y^y < (x+y)^(x+y) be Proven Algebraically?

  • Thread starter Thread starter bill01
  • Start date Start date
  • Tags Tags
    Inequality
bill01
Is it possible to prove this:
x^x + y^y < (x+y)^(x+y) for every x,y >=1 ?
 
Mathematics news on Phys.org
Well, let me think, since I am not really sure if this would work for all parameters of x and y... never mind, you have x,y >1! What you could do is take the derivative of both equations to measure it's change in slope, and if (x+y)^(x+y)is greater, then it will have a change in slope that is greater then the other equation. But I am not sure if that is what you want.
 
Iam just proving it,just expand the Right side (x+y)^(x+y), u get x multiplied by x+y times which is obviously greater than x^x and same in case of y and remaining terms of expansion are positive as x,y>1 and no negative terms in expansion. hope it helps.
 
  • Like
Likes RaulTheUCSCSlug
Thanks for the answers, but I would prefer an algebraic solution.
I did what Raul said with the graph but I would like an algebraic sol.
I believe that it is solved algebraically and it is not a transcendental equation.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top